В математике, физике и астрономии очень важно уметь находить наибольшие и наименьшие значения изменяющихся величин – их экстремумы. Например, как среди цилиндров, вписанных в шар, найти цилиндр, имеющий наибольший объём? Все такие задачи в настоящее время могут быть решены с помощью дифференциального исчисления. Архимед первым увидел связь этих задач с проблемами определения касательных и показал, как решать задачи на экстремумы.
Теорема первая: Площадь круга равна площади прямоугольного треугольника, один из катетов которого равняется длине окружности круга, а другой радиусу круга.
Теорема вторая: Площадь круга относится к площади квадрата, построенного на диаметре, приблизительно, как 11:14.
Теорема третья: C-3d < d и C-3d > d, где С -длина окружности, а d-ее диаметр. Откуда, d < C-3d < d. Верхнюю и нижнюю границы для числа Архимед получил путем последовательного рассмотрения отношений периметров к диаметру правильных описанных и вписанных в круг многоугольников, начиная с шестиугольника и кончая 96-угольником. Если приравнять верхней границе, то получим архимедово значение (архимедова постоянная равная
). Более того, Архимед сумел оценить точность приближения для числа π: .Мы до сих пор пользуемся придуманной Архимедом системой наименования целых чисел. Некоторые теоремы планиметрии также впервые были доказаны Архимедом. Так, теорема о площади треугольника по трем его сторонам указанную формулу называют формулой Герона, потому что ему принадлежит заслуга широкого применения её на практике. Приписываемая Герону, впервые была предложена Архимедом.Математический метод Архимеда, связанный с математическими работами пифагорейцев и с завершившей их работой Эвклида, а также с открытиями современников Архимеда, подводил к познанию материального пространства, окружающего нас, к познанию теоретической формы предметов, находящихся в этом пространстве, формы совершенной, геометрической формы, к которой предметы более или менее приближаются и законы которой необходимо знать, если мы хотим воздействовать на материальный мир. Но Архимед знал также, что предметы имеют не только форму и измерение: они движутся, или могут двигаться, или остаются неподвижными под действием определенных сил, которые двигают предметы вперед или приводят в равновесие. Великий сиракузец изучал эти силы, изобретая новую отрасль математики, в которой материальные тела, приведенные к их геометрической форме, сохраняют в то же время свою тяжесть. Эта геометрия веса и есть рациональная механика, это статика, а также гидростатика.Спираль Архимеда
Архимедова спираль описывается точкой M, движущейся равномерно по прямой d, которая вращается вокруг точки O, принадлежащей этой прямой. В начальный момент движения M совпадает с центром вращения O прямой. Площадь сектора, ограничиваемого дугой архимедовой спирали и двумя радиус-векторами и соответствующими углами.
Инфинитезимальные методы
В группу инфинитезимальных методов входят: метод исчерпывания, метод интегральных сумм, дифференциальные методы. Одним из самых ранних методов является метод интегральных сумм. Он применялся при вычислении площадей фигур, объемов тел, длин кривых линий. Для вычисления объема, тело вращения разбивается на части, и каждая часть аппроксимируется (приближается) описанными и вписанными телами, объемы которых можно вычислить. Теперь остается выбрать аппроксимирующие сверху и снизу тела таким образом, чтобы разность их объемов могла быть сделана сколь угодно малой.
Дифференциальным методом Архимед находил касательную к спирали. Идеи Архимеда почти на два тысячелетия опередили своё время. Только в XVII веке учёные смогли продолжить и развить труды великого греческого математика.
В честь Архимеда названы кратер Archimedes и горная цепь MontesArchimedes; астероид 3600 Архимед. Лейбниц писал: «Внимательно читая сочинения Архимеда, перестаёшь удивляться всем новым открытиям геометров». В честь Архимеда названы улицы в Донецке, Днепропетровске, Нижнем Новгороде и Амстердаме, площадь в Сиракузах.
До наших дней сохранились:
· Квадратура параболы / τετραγωνισμὸς παραβολῆς— определяется площадь сегмента параболы.
· О шаре и цилиндре / περὶ σφαίρας καὶ κυλίνδρου— доказывается, что объём шара равен 2/3 от объёма, описанного около него цилиндра, а площадь поверхности шара равна площади боковой поверхности этого цилиндра.
· О спиралях / περὶἑλίκων— выводятся свойства спирали Архимеда.
· О коноидах и сфероидах / περὶ κωνοειδέων καὶ σφαιροειδέων— определяются объёмы сегментов параболоидов, гиперболоидов и эллипсоидов вращения.
· О равновесии плоских фигур / περὶἰσορροπιῶν— выводится закон равновесия рычага; доказывается, что центр тяжести плоского треугольника находится в точке пересечения его медиан; находятся центры тяжести параллелограмма, трапеции и параболического сегмента.
· Послание к Эратосфену о методе / πρὸς Ἐρατοσθένην ἔφοδος— обнаружено в 1906 году, по тематике частично дублирует работу «О шаре и цилиндре», но здесь используется механический метод доказательства математических теорем.
· О плавающих телах / περὶ τῶν ὀχουμένων— выводится закон плавания тел; рассматривается задача о равновесии сечения параболоида, моделирующего корабельный корпус.
· Измерение круга / κύκλου μέτρησις— до нас дошёл только отрывок из этого сочинения. Именно в нём Архимед вычисляет приближение для числа π.
· Псаммит / ψαμμίτης— вводится способ записи очень больших чисел.
· Стомахион / στομάχιον— дано описание популярной игры.
· Задача Архимеда о быках / πρόβλημα βοικόν— ставится задача, приводимая к уравнению Пелля.
Ряд работ Архимеда сохранился только в арабском переводе:
· Трактат о построении около шара телесной фигуры с четырнадцатью основаниями;
· Книга лемм;
· Книга о построении круга, разделённого на семь равных частей;
· Книга о касающихся кругах.