5) Экономическая интерпретация. Средний объем промышленного производства за 16 месяцев составил 1178,1 тыс. руб. С надежностью 0,98 можно утверждать, что средний объем производства находится в пределах от 1061,8 до 1294,4 тыс. руб. Наибольшее число месяцев (7) объем производства находился в интервале от 1100 до 1300 тыс. руб.
По корреляционной таблице требуется: 1) в прямоугольной системе координат построить эмпирические ломаные регрессии Y на X и X на Y, сделать предположение о виде корреляционной связи; 2) оценить тесноту линейной корреляционной связи; 3) составить линейные уравнения регрессии Y на X и X на Y, построить их графики в одной системе координат; 4) используя полученное уравнение, оценить ожидаемое среднее значение признака Y при заданном x = 98. Дать экономическую интерпретацию полученных результатов.
В таблице дано распределение 200 заводов по основным фондам X в млн. руб. и по готовой продукции Y в млн. руб.:
y\x | 20 | 30 | 40 | 50 | 60 | 70 | 80 | 90 | 100 | ny |
12 | 4 | 4 | ||||||||
18 | 6 | 10 | 2 | 18 | ||||||
24 | 8 | 13 | 1 | 1 | 23 | |||||
30 | 4 | 7 | 9 | 3 | 4 | 2 | 29 | |||
36 | 1 | 2 | 3 | 12 | 4 | 8 | 30 | |||
42 | 1 | 3 | 18 | 24 | 1 | 47 | ||||
48 | 7 | 12 | 3 | 22 | ||||||
54 | 9 | 18 | 27 | |||||||
nx | 10 | 23 | 24 | 14 | 19 | 26 | 41 | 22 | 21 | n = 200 |
1) Расчетная таблица:
XY | 20 | 30 | 40 | 50 | 60 | 70 | 80 | 90 | 100 | ny | yny | y2 | y2ny | ∑xnxy | Усл. ср. y |
12 | 4 | 4 | 48 | 144 | 576 | 80 | 20,0 | ||||||||
18 | 6 | 10 | 2 | 18 | 324 | 324 | 5832 | 500 | 27,8 | ||||||
24 | 8 | 13 | 1 | 1 | 23 | 552 | 576 | 13248 | 870 | 37,8 | |||||
30 | 4 | 7 | 9 | 3 | 4 | 2 | 29 | 870 | 900 | 26100 | 1470 | 50,7 | |||
36 | 1 | 2 | 3 | 12 | 4 | 8 | 30 | 1080 | 1296 | 38880 | 1900 | 63,3 | |||
42 | 1 | 3 | 18 | 24 | 1 | 47 | 1974 | 1764 | 82908 | 3500 | 74,5 | ||||
48 | 7 | 12 | 3 | 22 | 1056 | 2304 | 50688 | 1940 | 88,2 | ||||||
54 | 9 | 18 | 27 | 1458 | 2916 | 78732 | 2610 | 96,7 | |||||||
nx | 10 | 23 | 24 | 14 | 19 | 26 | 41 | 22 | 21 | 200 | 7362 | 296964 | 12870 | ||
xnx | 200 | 690 | 960 | 700 | 1140 | 1820 | 3280 | 1980 | 2100 | 12870 | |||||
x2 | 400 | 900 | 1600 | 2500 | 3600 | 4900 | 6400 | 8100 | 10000 | ||||||
x2nx | 4000 | 20700 | 38400 | 35000 | 68400 | 127400 | 262400 | 178200 | 210000 | 944500 | |||||
∑ynxy | 156 | 528 | 630 | 444 | 672 | 1020 | 1692 | 1104 | 1116 | 7362 | |||||
∑xynxy | 3120 | 15840 | 25200 | 22200 | 40320 | 71400 | 135360 | 99360 | 111600 | 524400 | |||||
Усл. ср. x | 15,6 | 23,0 | 26,3 | 31,7 | 35,4 | 39,2 | 41,3 | 50,2 | 53,1 |
Подсчитаем условные средние:
x = 20 = = (12 * 4 + 18 * 6) / 10 = 15,6 и т.д. y = 12 = = 20 * 4 / 4 = 20,0 и т.д.Эмпирические ломаные регрессии:
Эмпирические линии регрессии близки к прямым. Можно сделать предположение о линейном характере связи между величиной основных фондов и готовой продукцией.
2) Выборочные средние:
= = 12870 / 200 = 64,35 = = 7362 / 200 = 36,81Выборочные средние квадратические отклонения
σx =
= = 24,12σy =
= = 11,39Выборочный коэффициент корреляции
r =
= = 0,9223) Уравнение линейной регрессии Y по X:
x - = r (x - ) x – 36,81 = 0,922 * (x – 64,35) x = 0,435x + 8,786Уравнение линейной регрессии X по Y:
y - = r ( y - ) y – 64,35 = 0,922 * (y – 36,81) y = 1,951y – 7,452Графики:
4) Ожидаемое среднее значение Y при X = 98:
x = 98 = 0,435 * 98 + 8,786 = 51,5 млн. руб.Экономическая интерпретация. Связь между величиной основных фондов и готовой продукций прямая и очень тесная: коэффициент корреляции положителен и близок к 1. При увеличении основных фондов на 1 млн. руб. готовая продукция возрастает в среднем на 0,435 млн. руб. При увеличении готовой продукции на 1 млн. руб. основные фонды возрастают в среднем на 1,951 млн. руб. При величине основных фондов 98 млн. руб. ожидаемое среднее значение готовой продукции 51,5 млн. руб.
Даны эмпирические значения случайной величины. Требуется: 1) выдвинуть гипотезу о виде распределения; 2) проверить гипотезу с помощью критерия Пирсона при заданном уровне значимости α = 0,05. За значения параметров a и σ принять среднюю выборочную и выборочное среднее квадратичное отклонение, вычисленные по эмпирическим данным.
В таблице дано распределение дохода от реализации некоторого товара:
8-12 | 12-16 | 16-20 | 20-24 | 24-28 | 28-32 |
6 | 11 | 25 | 13 | 4 | 1 |
1) Вычислим середины интервалов дохода:
xi = (8 + 12) / 2 = 10 и т.д.
Расчетная таблица:
№ | xi | ni | xini | xi - | (xi - )2 | (xi - )2 ni |
1 | 10 | 6 | 60 | -8,067 | 65,071 | 390,4 |
2 | 14 | 11 | 154 | -4,067 | 16,538 | 181,9 |
3 | 18 | 25 | 450 | -0,067 | 0,004 | 0,1 |
4 | 22 | 13 | 286 | 3,933 | 15,471 | 201,1 |
5 | 26 | 4 | 104 | 7,933 | 62,938 | 251,8 |
6 | 30 | 1 | 30 | 11,933 | 142,404 | 142,4 |
Сумма | 60 | 1084 | 1167,7 |
Выборочное среднее
= = 1084 / 60 = 18,067Выборочное среднее квадратическое отклонение
s =
= = 4,412Выдвигаем гипотезу о нормальном распределении.
2) Расчетная таблица для применения критерия Пирсона:
i | xi | Частоты ni | ui = (xi - ) / s | φ (ui) = | Теорет. частоты ni` = nh φ (ui) / s | ni - ni` | (ni - ni`)2 | (ni - ni`)2 / ni` |
1 | 10 | 6 | -1,829 | 0,0750 | 4,1 | 1,9 | 3,7 | 0,9 |
2 | 14 | 11 | -0,922 | 0,2609 | 14,2 | -3,2 | 10,2 | 0,7 |
3 | 18 | 25 | -0,015 | 0,3989 | 21,7 | 3,3 | 10,9 | 0,5 |
4 | 22 | 13 | 0,892 | 0,2681 | 14,6 | -1,6 | 2,5 | 0,2 |
5 | 26 | 4 | 1,798 | 0,0792 | 4,3 | -0,3 | 0,1 | 0,0 |
6 | 30 | 1 | 2,705 | 0,0103 | 0,6 | 0,4 | 0,2 | 0,3 |
Сумма | 60 | 59,4 | 2,7 |
Наблюдаемое значение
χн2 = ∑ (ni - ni`)2 / ni` = 2,7
Критическое значение (из таблиц при уровне значимости α = 0,05 и числе степеней свободы k = 6 – 3 = 3)
χкр2 = 7,8
Так как χн2 < χкр2, гипотезу о нормальном распределении принимаем.