Смекни!
smekni.com

Высшая математика Матрица (стр. 2 из 3)

А = 1 1 1 0

1 2 2 1

0 3 2 2

Вычислим определитель матрицы А

2 2 1 0 2 2 1 0 2 2 1 1 1 0

∆ = 1 1 1 0 = 1 1 1 0 = (-1)3+4 * 1 1 1 = - 1 1 1 =

1 2 2 1 1 2 2 1 -2 -1 -2 0 1 0

0 3 2 2 -2 -1 -2 0

= - (-1)2+3 * 1 1 = 1

0 1

∆ ≠ 0, тогда система имеет решение х2 = ∆ х2 /∆

2 8 1 0 2 8 1 0 2 8 1 2 8 1

∆ х2 = 1 3 1 0 = 1 3 1 0 = (-1)3+4 * 1 3 1 = - 1 5 0 =

1 3 2 1 1 3 2 1 -2 -3 -2 0 3 0

0 3 2 2 -2 -3 -2 0

= -(-1)1+3 * 1 5 = ( 3 + 0 ) = 3

0 8

х2 = 3 /1 = 3.

Решим систему методом Гаусса

1 + 2х2 + х3 = 8 *(-2) *(-1)

х1 + х2 + х3 = 3

х1 + 2х2 + 2х3 + х4 = 3

2 + 2х3 +2х4 = 3

х1 + х2 + х3 = 3

- х3 = 2

х2 + х3 + х4 = 0 *(-3)

2 + 2х3 +2х4 = 3

х1 + х2 + х3 = 3

х2 + х3 + х4 = 0

- х3 - х4 = 3

х3 = -2

1) х3 = - 2 3) х2 - 2 - 1= 0

2) 2 - х4 = 3 х2 = 3

х4 = -1 4) х1 + 3 - 2 = 3

х1 = 2

Проверка :

2 + 3 – 2 =3, 3 = 3

4 + 3*3 – 2 = 8, 8 = 8

2 + 6 – 4 – 2 = 3, 3 =3

9 – 4 – 2 = 3 , 3 = 3.

Ответ : х1 = 2 , х2 = 3 , х3 = - 2 , х4 = -1.

7. Дана система линейных уравнений

1 + х2 - х3 - х4 = 2,

1 + х2 - 2х3 - х4 = 7,

х1 - х2 - х4 = -1,

х1 + х2 - х3 -3х4 = -2.

Докажите ,что система совместна . Найдите её общее решение . (392.БЛ). Найдите частное решение , если х4 = 1 .

Доказательство :

Система линейных уравнений совместна тогда и только тогда , когда ранг основной матрицы

системы равен рангу расширенной матрицы .

Составим расширенную матрицу :

3 1 -1 -1 2 0 -2 2 8 8 0 0 1 6 7

А = 9 1 -2 -1 7 → 0 -8 7 26 25 → 0 0 3 18 21 =0

1 -1 0 -1 -1 0 -2 1 2 1 0 -2 1 2 1

1 1 -1 -3 -2 1 1 -1 -3 -2 1 1 -1 -3 -2

Первая и вторая строка пропорциональны следовательно А = 0. Поэтому ранг матрицы и расширенной матрицы равны 3 поэтому система является совместной .

Решим систему методом Гаусса :

запишем последнее уравнение на первое место :

х1 + х2 - х3 -3х4 = -2

1 + х2 - х3 - х4 = 2

1 + х2 - 2х3 - х4 = 7

х1 - х2 - х4 = -1

1 1 -1 -3 -2 1 1 -1 -3 -2 1 1 -1 -3 -2

С = 3 1 -1 -1 2 → 0 2 -2 -8 -8 → 0 2 -2 -8 -8 →

9 1 -2 -1 7 0 8 -7 -26 -25 0 0 -1 -6 -7

1 -1 0 -1 -1 0 2 -1 -2 -1 0 0 -1 -6 -7

х1 + х2 - х3 -3х4 = -2

→ 2х2- 2х3 -8х4 = -8

- х3 -6х4 = -7.

1) х3 = 7 - 6х4

2) х2 - х3 -4х4 = -4

х2 = х3 + 4х4 - 4

х2 = 7 - 6х4 + 4х4 - 4

х2 = 3 - 2х4

3) х1 = - х2 + х3 + 3х4 - 2

х1 = - 3+ 2х4 + 7 - 6х4 + 3х4 – 2

х1 = 2-х4 .

Получаем общее решение системы :

х1 = 2-х4

х2 = 3 - 2х4

х3 = 7 - 6х4.

Найдём частное решение , если х4 = 1 тогда

х1 = 2– 1 = 1;

х2 = 3 – 2*1 = 1;

х3 = 7 – 6*1 =1.

Ответ : (1;1;1;1) – частное решение .

8. Дана система линейных однородных уравнений

1 +3х2 - х3 - х4 + х5 = 0,

1 - 2х2 - 3х3 -3х5 = 0,

х1 - 3х2 + 2х3 -5х4 -2х5 = 0.

Докажите , что система имеет нетривиальное решение . Найдите общее решение системы . Найдите какую-нибудь фундаментальную систему решений Доказательство :

Система имеет нетривиальное решение тогда и только тогда , когда ранг её матрицы меньше числа неизвестных .В этом случае ранг матрицы не больше трёх , а переменных в системе пять .

Решим систему методом Гаусса .

Запишем матрицу системы :

2 3 -1 -1 1 1 -3 2 -5 -2

А = 3 -2 3 0 -3 → 0 9 -5 9 5 │*7 →

1 -3 2 -5 -2 0 7 -3 15 3 │*(-9)

1 -3 2 -5 -2

→ 0 9 -5 9 5

0 0 -8 -72 8

х1 -3х2 + 2х3 - 5х4 -2х5 = 0

2 - 5х3 + 9х4 +5х5 = 0

-8х3 -72х4 +8х5 = 0

1) 8х3 = -72х4 + 8х5

х3 = - 9х4 + х5

2) 9х2 + 45х4 - 5х5 + 9х4 +5х5 = 0

2 + 36х4 = 0

х2= - 4х4

3) х1 +12х4 - 18х4 + 2х5 - 5х4 -2х5 = 0

х1 - 11х4 = 0

х1 =11х4

Общее решение системы :

х1 =11х4

х2= - 4х4

х3 = - 9х4 + х5

Найдём фундаментальную систему решений , положив х4 = 1 , х5 = 0.

х1 =11*1 = 11,

х2= - 4*1 = -4,

х3 = - 9*1 + 0 = -9.

Пусть х4 = 0, х5 = 1.

х1 =11*0 = 0,

х2= - 4*0 = 0,

х3 = - 9*0 + 1 = 1.

Ответ : (11;-4;-9;1;0)

(0; 0; 1; 0; 1).

9 (3СА). Найдите площадь параллелограмма , построенного на векторах а = 2р + 3r, b = p –2r , | p | = √2 , | r | = 3, (p,^r) = 45° .

Решение :

S =| [а , b] | = | [2р + 3r , p –2r] | = | 2[p , p] - 4[p, r ] + 3[r , p] -6[r , r] |

[p , p] = 0 , [r , r] = 0 , [r , p] = - [p, r ] .

S = | 7[r , p] | = 7| r | * | p | * sinφ

S = 7 * 3 * √2 * sin 45° = 21 * √2 * √2 / 2 =21 .

Ответ :S =21 .

10 (78Т). Вычислите ПрBD[BC ,CD] , если B(6,3,3) ; C(6,4,2) ; D(4,1,4) .

Решение :

Найдём координаты векторов

BD = ( 4 – 6 , 1 – 3 , 4 – 3 ) = ( - 2 ; - 2 ; 1 ),

BC = ( 6 – 6 , 4 – 3 , 2 – 3 ) = ( 0 ; 1 ; - 1 ),

CD = ( 4 – 6 , 1 – 4 , 4 – 2 ) = ( - 2 ; - 3 ; 2 ).

Найдём векторное произведение :

i j k

[BC ,CD] = 0 1 -1 = i (2 – 3) – j (0 –2) + k (0 + 2) = - i + 2j + 2k .

-2 -3 2

Пусть [BC ,CD] = а , тогда а = ( -1 ; 2 ; 2 )

ПрBD а = ( BD , a ) /| BD |

( BD , a ) = -2*( -1 ) – 2*2 + 1*2 = 2 –4 + 2 = 0 .

ПрBDа = 0 .

Ответ : ПрBDа = 0 .

11. Линейный оператор А действует в R3 → R3 по закону Ax = (- х1 + 2х2 + x3 , 5х2 , 3х1 + 2х2 + х3 ), где х( х1, х2, х3 ) – произвольный вектор .(125.РП). Найдите матрицу А этого оператора в каноническом базисе . Докажите , что вектор х(1,0 ,3) является собственным для матрицы А .(Т56). Найдите собственное число λ0 ,соответствующее вектору х . (Д25.РП). Найдите другие собственные числа , отличные от λ0 . Найдите все собственные векторы матрицы А и сделайте проверку .

Решение :

Ax = (- х1 + 2х2 + x3 ; 5х2 ; 3х1 + 2х2 + х3 )

Найдём матрицу в базисе l1 , l2 , l3

Al1 = (-1 ; 2 ;1)

Al2 = (0 ; 5 ; 0)

Al3 = (3 ; 2 ; 1)

-1 2 1

A = 0 5 0

3 2 1 .

Докажем , что вектор х = (1 ,0 ,3) является собственным для матрицы А.

Имеем

-1 2 1 1 -1 + 0 + 3 2 1

Aх = 0 5 0 * 0 = 0 + 0 + 0 = 0 = 2 * 0

3 2 1 3 3 + 0 + 3 6 3 .

Отсюда следует , что вектор х = (1 ,0 ,3) собственный и отвечает собственному числу λ = 2 .

Составляем характеристическое уравнение :

-1 – λ 2 1