Министерство образования
СИСТЕМ УПРАВЛЕНИЯ И РАДИОЭЛЕКТРОНИКИ (ТУСУР)
2003
1(Т85.РП). Найдите матрицу D=(AC-AB), если
2 -2 1 -3 5 2 -3 4
(В ответ ввести вторую строку матрицы D.)
Решение:
а*с= 1 0 * 3 4 4 = 1*3+0*1 1*4+0*(-3) 1*4+0*5 = 3 4 4
2 -2 1 -3 5 2*3+(-2)*1 2*4-2*(-3) 2*4-2*5 4 14 -2
2 -2 2 -3 4 2*(-3)-2*2 2*1-2*(-3) 2*4-2*4 -10 8 0
| | | |
D=А*С-А*В= 3 4 4 _ -3 1 4 = 3-(-3) 4-1 4-4 = 6 3 0
4 14 -2 -10 8 0 4-(-10) 14-8 -2-0 14 6 -2
Ответ :14 , 6 , -2.
1 1 1 0
1 2 2 1
0 3 2 2
Решение:
1 1 1 0
1 2 2 1 =
0 3 2 2
Умножим третью строку на (-2) и сложим с четвёртой строкой , результат запишем
в четвёртую строку:
1 1 1 0
= 1 2 2 1 =
-2 -1 -2 0
Данный определитель разложим по элементам четвёртого столбца :
= 1*(-1) * 1 1 1 =
-2 -1 -2
Умножим вторую строку на (-2) и сложим с первой, результат запишем в первую строку . Умножим вторую строку на 2 и сложим с третьей , результат запишем в третью строку .
= - 1 1 1 = - (-1) 1+3 * (-1) * 1 1 = 1-0 =1;
0 1 0 0 1
Ответ: D = 1.
1 2 1 1 1 -1
X* 4 3 -2 = 16* -1 2 3
-5 -4 -1 0 -1 -2 .
Решение:
A*X=B , X=A-1 *B
1 2 1
det A= 4 3 -2 = 1*3*(-1)+1*4*(-4)+2*(-2)*(-5)-1*3*(-5)-2*4*(-1)-1*(-2)*(-4)=
-5 -4 -1
=-19+20+15-8+8=16 ;
det= 16 ≠ 0;
А1 1 = 3 -2 = -3 –8 = -11
-5 -1
А13 = 4 3 = -16+15 = -1
A21 = - 2 1 = -(-2+4) = -2
-4 -1
-5 -1
-5 -4
A32 = - 1 1 = - (-2-4) = 6
A33 = 1 2 = 3 –8 = -5
4 3
А-1 = 14/16 4/16 6/16
-1/16 -6/16 -5/16
| |
-11/16 -2/16 -7/16 1*16 1*16 -1*16
Х = 14/16 4/16 6/16 * -1*16 2*16 3*16 =
-1/16 -6/16 -5/16 0*16 -1*16 2*16
|
-11*1+(-2*(-1))+(-7*0) -11*1+(-2*2)+(-7*(-1)) -11*(-1)+(-2*3)+(-7*2)
= 14*1+4*(-1)+6*0 14*1+4*2+6*(-1) 14*(-1)+4*3+6*2 =
-9 -8 -9
= 10 16 10
5 -8 -27
Ответ : Х = : -9 , -8 , -9 : 10 , 16 , 10 : 5 , -8 , -27 .
1 2 -2 1
последняя строка матрицы А = 2 -3 3 2 является линейной комбинацией первых
1 -1 1 2
8 -7 p 11
трёх строк?
Решение :
Вычислим detA:
det A = 2 -3 3 2 = 0 -7 7 0 = 3 -3 -1 = 3 -3 -1 =
1 -1 1 2 0 3 -3 -1 23 -16-p -3 14 -7-p 0
8 -7 p 11 0 23 -16-p -3
14 -7-p
Если detA=0 , то ранг матрицы А равен двум , т.е. 7p – 49 = 0 , p = 7.
Третья строка по теореме о базисном миноре является комбинацией первых двух .
Обозначим коэффициенты этой комбинации через λ1 и λ2 , λ3 ,тогда (8,-7,7,11) = λ1(1,2,-2,1)+ + λ2 (2,-3,3,2) + λ3 (1,-1,1,2);
2λ1- 3λ2 - λ3 = -7
-2λ1 + 3λ2 + λ3 = 7
λ1 + 2λ2 + 2λ3 = 11
Решим данную систему методом Гаусса :
7λ2 + 3λ3 = 23 2) 7λ2 + 9 = 23
7λ2 + 3λ3 = 23 7λ2 = 14
λ3 = 3 λ2 = 2
3) λ1 + 2*2 + 3 =8
λ1 = 1
коэффициенты линейных комбинаций λ1 = 1 ; λ2 = 2 ; λ3 = 3 ;
Ответ : (8,-7,7,11) = 1(1,2,-2,1)+ 2(2,-3,3,2) + 3(1,-1,1,2) .
5. Относительно канонического базиса в R3 даны четыре вектора f1(1,1,1) , f2 (1,2,3) , f3 (1,3,6), x(4,7,10). Докажите, что векторы f1, f2 , f3 можно принять за новый базис в R3 . (ТР0.РП) . Найдите координаты вектора x в базисе fi.
1 3 6 0 2 5 2 5
Так как ∆ ≠ 0 , то векторы f1, f2 , f3 образуют базис трёхмерного пространства R3
Для вычисления координат вектора x в этом базисе составим систему линейных уравнений :
х1 + 2х2 + 3х3 = 7
х1 + 3х2 + 6х3 = 10
2х2 + 5х3 = 6
х2 + 2х3 = 3 2) х2 + 0= 3 х1 = 4 - 3
х3 = 0 х2 = 0 х1 = 1
х1 = 1 , х2 = 0 , х3 = 0 .
Решение этой системы образует совокупность координат вектора x в базисе f1, f2 , f3
x(1;3;0);
x = f1 + 3f2 + 0f3;
x = f1 + 3f2 .
Ответ : координаты вектора x (1;3;0).
6. Докажите , что система
х1 + х2 + х3 = 3,
х1 + 2х2 + 2х3 + х4 = 3,
3х2 + 2х3 +2х4 = 3
имеет единственное решение . (362).Неизвестное х2 найдите по формулам Крамера . (0М1.РЛ) . Решите систему методом Гаусса .
Решение:
Составим матрицу из коэффициентов при переменных