Смекни!
smekni.com

Высшая математика Матрица (стр. 1 из 3)

Министерство образования

Российской Федерации

ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

СИСТЕМ УПРАВЛЕНИЯ И РАДИОЭЛЕКТРОНИКИ (ТУСУР)

КОНТРОЛЬНАЯ РАБОТА

2003

1(Т85.РП). Найдите матрицу D=(AC-AB), если

А= 1 0 ,C= 3 4 4 , B= -3 1 4 .

2 -2 1 -3 5 2 -3 4

(В ответ ввести вторую строку матрицы D.)

Решение:

Размеры матриц А и С согласованны, т.к. число элементов в строке матрицы А равно числу элементов в столбце матрицы В.

а*с= 1 0 * 3 4 4 = 1*3+0*1 1*4+0*(-3) 1*4+0*5 = 3 4 4

2 -2 1 -3 5 2*3+(-2)*1 2*4-2*(-3) 2*4-2*5 4 14 -2

А*В= 1 0 * -3 1 4 = 1*(-3)+0*2 1*1+0*(-3) 1*4+0*4 = -3 1 4

2 -2 2 -3 4 2*(-3)-2*2 2*1-2*(-3) 2*4-2*4 -10 8 0


D=А*С-А*В= 3 4 4 _ -3 1 4 = 3-(-3) 4-1 4-4 = 6 3 0

4 14 -2 -10 8 0 4-(-10) 14-8 -2-0 14 6 -2

Ответ :14 , 6 , -2.

2(3ТО).Вычислите определитель D= 2 2 1 0

1 1 1 0

1 2 2 1

0 3 2 2

Решение:

2 2 1 0

1 1 1 0

1 2 2 1 =

0 3 2 2

Умножим третью строку на (-2) и сложим с четвёртой строкой , результат запишем

в четвёртую строку:

2 2 1 0

1 1 1 0

= 1 2 2 1 =

-2 -1 -2 0

Данный определитель разложим по элементам четвёртого столбца :

3+4 2 2 1

= 1*(-1) * 1 1 1 =

-2 -1 -2

Умножим вторую строку на (-2) и сложим с первой, результат запишем в первую строку . Умножим вторую строку на 2 и сложим с третьей , результат запишем в третью строку .

0 0 -1

= - 1 1 1 = - (-1) 1+3 * (-1) * 1 1 = 1-0 =1;

0 1 0 0 1

Ответ: D = 1.

3(598.Р7).Решите матричное уравнение

1 2 1 1 1 -1

X* 4 3 -2 = 16* -1 2 3

-5 -4 -1 0 -1 -2 .

Решение:

A*X=B , X=A-1 *B

Найдём det A:

1 2 1

det A= 4 3 -2 = 1*3*(-1)+1*4*(-4)+2*(-2)*(-5)-1*3*(-5)-2*4*(-1)-1*(-2)*(-4)=

-5 -4 -1

=-19+20+15-8+8=16 ;

det= 16 ≠ 0;

Составим матрицу А -1 , обратную матрицы А:

А1 1 = 3 -2 = -3 –8 = -11

-4 -1

А12 = - 4 -2 = -(-4-10) = 14

-5 -1

А13 = 4 3 = -16+15 = -1

-5 -4

A21 = - 2 1 = -(-2+4) = -2

-4 -1

A22 = 1 1 = -1+5 = 4

-5 -1

A23 = - 1 2 = - (-4+10) = -6

-5 -4

A31 = 2 1 = - 4-3 = -7

3 -2

A32 = - 1 1 = - (-2-4) = 6

–2

A33 = 1 2 = 3 –8 = -5

4 3

-11/16 -2/16 -7/16

А-1 = 14/16 4/16 6/16

-1/16 -6/16 -5/16


-11/16 -2/16 -7/16 1*16 1*16 -1*16

Х = 14/16 4/16 6/16 * -1*16 2*16 3*16 =

-1/16 -6/16 -5/16 0*16 -1*16 2*16


-11*1+(-2*(-1))+(-7*0) -11*1+(-2*2)+(-7*(-1)) -11*(-1)+(-2*3)+(-7*2)

= 14*1+4*(-1)+6*0 14*1+4*2+6*(-1) 14*(-1)+4*3+6*2 =

-1*1+(-6*(-1))+(-5*0) -1*1+(-6*2)+(-5*(-1)) -1*(-1)+(-6*3)+(-5*2)

-9 -8 -9

= 10 16 10

5 -8 -27

Ответ : Х = : -9 , -8 , -9 : 10 , 16 , 10 : 5 , -8 , -27 .

4(4П5).При каком значении параметра p , если он существует ,

1 2 -2 1

последняя строка матрицы А = 2 -3 3 2 является линейной комбинацией первых

1 -1 1 2

8 -7 p 11

трёх строк?

Решение :

Вычислим detA:

1 2 -2 1 1 2 -2 1 -7 7 0 -7 7 0

det A = 2 -3 3 2 = 0 -7 7 0 = 3 -3 -1 = 3 -3 -1 =

1 -1 1 2 0 3 -3 -1 23 -16-p -3 14 -7-p 0

8 -7 p 11 0 23 -16-p -3

-1*(-1) 2+3 * -7 7 = 49 + 7p – 98 = 7p - 49

14 -7-p

Если detA=0 , то ранг матрицы А равен двум , т.е. 7p – 49 = 0 , p = 7.

Третья строка по теореме о базисном миноре является комбинацией первых двух .

Обозначим коэффициенты этой комбинации через λ1 и λ2 , λ3 ,тогда (8,-7,7,11) = λ1(1,2,-2,1)+ + λ2 (2,-3,3,2) + λ3 (1,-1,1,2);

Имеем систему : λ1 + 2λ2 + λ3 = 8 * 2

1- 3λ2 - λ3 = -7

-2λ1 + 3λ2 + λ3 = 7

λ1 + 2λ2 + 2λ3 = 11

Решим данную систему методом Гаусса :

λ1 + 2λ2 + λ3 = 8 1) λ3 = 3

2 + 3λ3 = 23 2) 7λ2 + 9 = 23

2 + 3λ3 = 23 7λ2 = 14

λ3 = 3 λ2 = 2

3) λ1 + 2*2 + 3 =8

λ1 = 1

коэффициенты линейных комбинаций λ1 = 1 ; λ2 = 2 ; λ3 = 3 ;

Ответ : (8,-7,7,11) = 1(1,2,-2,1)+ 2(2,-3,3,2) + 3(1,-1,1,2) .

5. Относительно канонического базиса в R3 даны четыре вектора f1(1,1,1) , f2 (1,2,3) , f3 (1,3,6), x(4,7,10). Докажите, что векторы f1, f2 , f3 можно принять за новый базис в R3 . (ТР0.РП) . Найдите координаты вектора x в базисе fi.

Составим определитель из компонент векторов и f1, f2 , f3 вычислим его :

1 1 1 1 1 1

∆ = 1 2 3 = 0 1 2 = 1*(-1)1+1 * 1 2 = 5 – 4 = 1

1 3 6 0 2 5 2 5

Так как ∆ ≠ 0 , то векторы f1, f2 , f3 образуют базис трёхмерного пространства R3

Для вычисления координат вектора x в этом базисе составим систему линейных уравнений :

х1 + х2 + х3 = 4 *(-1)

х1 + 2х2 + 3х3 = 7

х1 + 3х2 + 6х3 = 10

х1 + х2 + х3 = 4

х2 + 2х3 = 3 *(-2)

2 + 5х3 = 6

х1 + х2 + х3 = 4 1) х3 = 0 3) х1 + 3+ 0= 4

х2 + 2х3 = 3 2) х2 + 0= 3 х1 = 4 - 3

х3 = 0 х2 = 0 х1 = 1

х1 = 1 , х2 = 0 , х3 = 0 .

Решение этой системы образует совокупность координат вектора x в базисе f1, f2 , f3

x(1;3;0);

x = f1 + 3f2 + 0f3;

x = f1 + 3f2 .

Ответ : координаты вектора x (1;3;0).

6. Докажите , что система

1 + 2х2 + х3 = 8,

х1 + х2 + х3 = 3,

х1 + 2х2 + 2х3 + х4 = 3,

2 + 2х3 +2х4 = 3

имеет единственное решение . (362).Неизвестное х2 найдите по формулам Крамера . (0М1.РЛ) . Решите систему методом Гаусса .

Решение:

Составим матрицу из коэффициентов при переменных

2 2 1 0