Смекни!
smekni.com

Статистический анализ выборочных совокупностей (стр. 2 из 4)

1.2. Числовые характеристики случайных величин

Математическое ожидание М(Х) непрерывной случайной величины, распределенной на интервале (х1; х2), характеризует ее среднее значение и определяется по формуле

(2)

ДисперсияD(X) непрерывной случайной величины, распределенной на интервале (х1; х2), характеризует ее рассеяние относительно математического ожидания и определяется по формуле

. (3)

Если возможные значения непрерывной случайной величины принадлежат всей числовой оси Ох, то математическое ожидание и дисперсия определяются по формулам

и
.

Среднее квадратическое отклонение σ(Х) случайной непрерывной величины определяется по формуле

. (4)

Начальным моментом

порядка s случайной величины Х называют математическое ожидание величины Хs:

. (5)

Начальный момент первого порядка случайной величины Х соответствует ее математическому ожиданию.

Центральным моментом

порядка s случайной величины Х называют математическое ожидание величины
:

. (6)

Центральные и начальные моменты случайной величины Х связаны следующими соотношениями:

1)

;

2)

;

3)

.

Центральный момент третьего порядка

случайной величины Х характеризует асимметрию (скошенность) распределения и служит для вычисления коэффициента асимметрии
, который определяется по формуле

. (7)

Асимметрия положительна, если «длинная часть» кривой плотности распределения расположена справа от математического ожидания. Асимметрия отрицательна, если «длинная часть» кривой распределения расположена слева от математического ожидания.

Центральный момент четвертого порядка

случайной величины Х характеризует «крутость» или островершинность графика ее плотности распределения и служит для вычисления эксцесса
, который определяется по формуле

. (8)

Эксцесс положительный, если кривая распределения имеет острую вершину. Эксцесс отрицательный, если кривая распределения имеет пологую вершину.

Равномерное распределение вероятностей

Распределение вероятностей называют равномерным, если на интервале (a; b), которому принадлежат все возможные значения случайной величины, плотность распределения сохраняет постоянное значение:

(9)

Функция равномерного распределения на интервале (a; b) имеет вид:

Характеристики равномерного распределения определяются по формулам (2) – (4), (7), (8):

1) математическое ожидание

;

2) дисперсия

;

3) среднее квадратическое отклонение

;

4) асимметрия

;

5) эксцесс

.

Вероятность попадания случайной величины Х, распределенной по равномерному закону, в заданный интервал (х1; х2) определяется по формуле (1)


.

Показательное распределение

Показательным (экспоненциальным) называют распределение непрерывной случайной величины Х, которое описывается плотностью

(10)

где λ – постоянная положительная величина.

Функция показательного распределения имеет вид:

Характеристики показательного распределения определяются по формулам (2) – (4):

1) математическое ожидание

;

2) дисперсия

;

3) среднее квадратическое отклонение

.

Вероятность попадания случайной величины Х, распределенной по показательному закону, в заданный интервал (х1; х2) определяется по формуле (1)

. (11)

Нормальное распределение

Нормальным называют распределение вероятностей непрерывной случайной величины, которое описывается плотностью

(12)

Математическое ожидание нормального распределения равно параметру а. Среднее квадратическое отклонение нормального распределения равно параметру σ. Коэффициент асимметрии

и эксцесс
нормального распределения равны нулю:
и
.

Вероятность попадания нормально распределенной случайной величины Х в заданный интервал (х1; х2) определяется по формуле (1):

, (13)

где Ф(х) – функция Лапласа,

. (14)

4. Статистический анализ выборочной совокупности

Выборочной совокупностью, или просто выборкой, называют совокупность случайно отобранных объектов. Объемом n выборочной совокупности называют число объектов этой совокупности.

Интервальным статистическим распределением выборки называют перечень интервалов и соответствующих им частот ni или относительных частот

.

Гистограммой частот называют ступенчатую фигуру, состоящую из прямоугольников, основаниями которых служат частичные интервалы длиной h, а высоты равны отношению

(плотность частоты).

Гистограммой относительных частот называют ступенчатую фигуру, состоящую из прямоугольников, основаниями которых служат частичные интервалы длиною h, а высоты равны отношению
(плотность относительной частоты).

Для распределения наблюдений по интервалам необходимо найти длину интервала h, определяемую как отношение разности между максимальным Xmaх и минимальным Xmin элементами выборки к количеству интервалов k

. (15)

Количество интервалов k (целое число) целесообразно выбрать не менее 7, но и не более 15 или определить по формуле Старджесса

, (16)

где n – объем выборки.

Если k, вычисляемое по формуле Старджесса, нецелое число, то в качестве числа интервалов можно ближайшее к k целое число, не меньшее k.

Статистические оценки параметров распределения

Выборочной средней

называют среднее арифметическое значение признака выборочной совокупности. Если все значения х1, х2, …., хn выборки объема n различны, то

.

Если значения признака х1, х2, …., хk имеют соответственно частоты n1, n2, …..nk, причем n1+n2+……+nk=n, то

. (17)