Смекни!
smekni.com

Построение корреляции исследуемых зависимостей (стр. 2 из 5)

Доверительный интервал прогноза:

g

=
±D
= 62,556 ± 6,911;

g

min =
- D
= 62,556 – 6,911 = 55,645;

g

mах =
+ D
= 62,556 + 6,911 = 69,467.

Итак, ожидаемый размер прибыли, если вложения в уставные капиталы предприятий составят 45 млн. руб., не выйдет с вероятностью 0,95 за пределы интервала [55,645; 69,467] млн. руб.

2. По 20 предприятиям региона, выпускающим однородную продукцию построена модель объема выпуска (у – тыс. ед.) от численности занятых (х1 - человек), элекровооруженности труда (х2 – кВт*час на 1 работника) и потерь рабочего времени (х3 - %). Результаты оказались следующими:

= а + 1,8*х1 + 3,2*х2 – 2,1*х3R2 = 0,875

(2,1) (3,4) (4,9) (1,9)

В скобках указаны фактические значения t-критерия для параметров уравнения регрессии.

Кроме того, известна следующая информация:

Среднее значение Коэффициент вариации, %
у 25 40
х1 420 20
х2 30 35
х3 18 10

1. Дать интерпретацию коэффициентов регрессии и оценить их значимость. Сделать выводы.

2. Оценить параметр а.

3. Оценить значимость уравнения регрессии с помощью F-критерия Фишера с вероятностью 0,95. Сделать выводы.

4. Построить уравнение множественной регрессии в стандартизованном масштабе и сделать выводы.

5. Найти частные коэффициенты корреляции и сделать выводы.

6. Дать интервальную оценку для коэффициентов регрессии.

7. Определить частные средние коэффициенты эластичности и сделать выводы.

8. Оценить скорректированный коэффициент множественной детерминации.

решение

Интерпретация уравнения регрессии: параметр b1 свидетельствует о том, что с увеличением численности занятых на 1 чел., объем выпуска увеличивается на 1,8 тыс. ед. при постоянном уровне электровооруженности труда и потерь рабочего времени.

Увеличение электровооруженности труда на 1 кВт.час на 1 работника объем выпуска увеличивается на 3,2 тыс. ед. при постоянном уровне численности занятых и потерь рабочего времени.

Увеличение же потерь рабочего времени на 1% объем выпуска снижается на 2,1 тыс. ед. при постоянном уровне численности занятых и элекровооруженности труда.

Оценку статистической значимости коэффициентов регрессии проведем с помощью t-статистики Стьюдента и путем расчета доверительного интервала каждого из показателей.

Выдвигаем гипотезу Н0 о статистически незначимом отличии коэффициентов регрессии от нуля.

tтабл для числа степеней свободы df = n – 2 = 20 – 2 = 18 и a = 0,05 составит 2,101.

Фактические значения t-статистики:

tb1 = 3,4 > tтабл = 2,101;

tb2 = 4,9 > tтабл = 2,101;

tb3 = -1,9 < tтабл = 2,101.

Гипотеза Н0 отклоняется, т.е. b1 и b2 не случайно отличаются от 0, а статистически значимы. Гипотеза Н0 не отклоняется в случае коэффициента b3, данный коэффициент следует признать статистически незначимым.

Выдвигаем гипотезу Н0 о статистически незначимом отличии показателя а от нуля.

tтабл для числа степеней свободы df = n – 2 = 20 – 2 = 18 и a = 0,05 составит 2,101.

Фактические значения t-статистики: tа = 2,1 > tтабл = 2,10.

Гипотеза Н0 отклоняется, т.е. параметр а не случайно отличаются от 0, а статистически значим.

f-тест – оценивание качества уравнения регрессии – состоит в проверке гипотезы Н0 о статической незначимости уравнения регрессии и показателя тесноты связи. Для этого выполняется сравнения фактического Fфакт и критического Fтабл значений f-критерия Фишера.

Fфакт определяется из соотношения:

Fфакт =

=
= 37,33,

где n – число единиц совокупности;

m – число параметров при переменных х.

Поскольку Fфакт > Fтабл. = 3,24, то Н0 – гипотеза о случайной природе оцениваемых характеристик отклоняется и признается их статистическая значимость и надежность.

Для построения уравнения в стандартизованном масштабе рассчитаемbi, используя формулы для перехода от bi к bi:

bi = bi*

.

Таблица 2.1

Расчет среднеквадратического отклонения

Среднее значение Коэффициент вариации, % s
(1) (2) (3) (4) = (2)*(3)
у 25 40 10
х1 420 20 84
х2 30 35 10,5
х3 18 10 1,8

b1 = 1,8*

= 15,12;

b2 = 3,2*

= 3,36;

b3 = -2,1*

= -0,38;

Получим уравнение: ty = 15,12*tx1 + 3,36*tx2 – 0,38*tх3.

Анализ β-коэффициентов показывает, что на объем выпуска из трех исследуемых факторов сильнее оказывает фактор X1 – численность занятых, так как ему соответствует наибольшее значение β-коэффициента.

Частные коэффициенты корреляции можно определить по формуле на основе коэффициентов детерминации:

ryx1*x2x3 =

;

ryx2*x1x3 =

;

ryx3*x1x2 =

.

Определяем частный коэффициент корреляции у с х1:

Fх1 =

;

tb1 =

Þ Fх1 =
= 3,42 = 11,56;

= R2 -
= 0,875 -
= 0,785;

ryx1*x2x3 =

= 0,647.

При постоянном уровне электровооруженности труда и потерь рабочего времени объем выпуска тесно зависит от численности занятых (теснота зависимости соответствует 0,647).

Определяем частный коэффициент корреляции у с х2:

Fх2 =

;

tb2 =

Þ Fх2 =
= 4,92 = 24,01;

= R2 -
= 0,875 -
= 0,687;

ryx2*x1x3 =

= 0,775.

При постоянном уровне численности занятых и потерь рабочего времени объем выпуска тесно зависит от электровооруженности труда (теснота зависимости соответствует 0,775).

Определяем частный коэффициент корреляции у с х3:

Fх3 =

;

tb3 =

Þ Fх3 =
= 1,92 = 3,61;

= R2 -
= 0,875 -
= 0,847;

ryx2*x1x3 =

= 0,428.

При постоянном уровне численности занятых и электровооруженности труда объем выпуска средне зависит от потерь рабочего времени (теснота зависимости соответствует 0,428).

Для расчета доверительного интервала определяем предельную ошибку для коэффициентов регрессии при факторах:

D = tтабл*mbxi,

где mbx1 =

=
= 0,529;

mbx2 =

=
= 0,653;