Смекни!
smekni.com

Построение корреляции исследуемых зависимостей (стр. 5 из 5)

sу =

=
= 11,27.

rxy =

= 0,289 - связь слабая, прямая.

При измерении корреляции между двумя временными рядами следует учитывать возможное существование ложной корреляции, что связано с наличием во временных рядах тенденции, т.е. зависимости обоих рядов от общего фактора времени. Для того чтобы устранить ложную корреляцию, следует коррелировать не сами уровни временных рядов, а их последовательные (первые или вторые) разности или отклонения от трендов (если последние не содержат тенденции).

Различия полученных результатов объясняется ложной корреляцией из-за наличия во временных рядах тенденции. Таким образом между временными рядами существует прямая слабая взаимосвязь.

Линейная регрессия сводится к нахождению уравнения вида:

= a + b*x.

Классический подход к оцениванию параметров линейной регрессии основан на методе наименьших квадратов.

Для линейных и нелинейных уравнений, приводимых к линейным, решается следующая система относительно a и b.

,

Можно воспользоваться готовыми формулами, которые вытекают из этой системы:

а =

;

b =

=
= 0,701;

а = 0,00286 – 0,701*0 = 0,00286.

Уравнение регрессии по отклонениям от трендов:

= 0,00286 + 0,701*х.