Смекни!
smekni.com

Коэффициент детерминации. Значимость уравнения регрессии (стр. 1 из 4)

Федеральное агентство по образованию

Всероссийский заочный финансово-экономический институт

Кафедра экономико-математических методов и моделей

КОНТРОЛЬНАЯ РАБОТА

по дисциплине «Эконометрика»

Вариант № 3

Исполнитель: Глушакова Т.И.

Специальность: Финансы и кредит

Курс: 3

Группа: 6

№ зачетной книжки: 07ффд41853

Руководитель: Денисов В.П.

г. Омск 2009г.


Задачи

По предприятиям легкой промышленности региона получена информация, характеризующая зависимость объема выпуска продукции (Y, млн. руб.) от объема капиталовложений (X, млн. руб.). Требуется:

1. Найти параметры уравнения линейной регрессии, дать экономическую интерпретацию коэффициента регрессии.

- уравнение линейной регрессии, где
- параметры уравнения.

, где
,
- средние значения признаков.

, где n – число наблюдений.

Представим вычисления в таблице 1:

Таблица 1. Промежуточные расчеты.

t xi yi yi* xi xi*xi
1 38 69 2622 1444
2 28 52 1456 784
3 27 46 1242 729
4 37 63 2331 1369
5 46 73 3358 2116
6 27 48 1296 729
7 41 67 2747 1681
8 39 62 2418 1521
9 28 47 1316 784
10 44 67 2948 1936
средн. знач. 35,5 59,4
2108,7
1260,25
21734
13093
n 10
1,319
12,573

Таким образом, уравнение линейной регрессии имеет вид:

Коэффициент регрессии равен 1,319>0, значит связь между объемом капиталовложений и выпуском продукции прямая, увеличение объема капиталовложений на 1 млн. руб. ведет к увеличению объема выпуска продукции в среднем на 1,319 млн. руб. Это свидетельствует об эффективности работы предприятий.

2. Вычислить остатки; найти остаточную сумму квадратов; оценить дисперсию остатков

; построить график остатков.

Вычислим прогнозное значение Y по формуле:

Остатки вычисляются по формуле:

.

Представим промежуточные вычисления в таблице 2.


Таблица 2. Вычисление остатков.

69 62,695 6,305 39,75303
52 49,505 2,495 6,225025
46 48,186 -2,186 4,778596
63 61,376 1,624 2,637376
73 73,247 -0,247 0,061009
48 48,186 -0,186 0,034596
67 66,652 0,348 0,121104
62 64,014 -2,014 4,056196
47 49,505 -2,505 6,275025
67 70,609 -3,609 13,02488

Дисперсия остатков вычисляется по формуле:

.

Построим график остатков с помощью MSExcel.

Рис. 1. График остатков.


3. Проверить выполнение предпосылок МНК

Проверим независимость остатков с помощью критерия Дарбина-Уотсона.

Вычислим коэффициент Дарбина-Уотсона по формуле:

.

Данные для расчета возьмем из таблицы 2.

dw = 0,803

Сравним полученное значение коэффициента Дарбина-Уотсона с табличными значениями границ

и
для уровня значимости 0,05 при k=1 и n=10.
=0,88,
=1,32, dw < d
, значит, остатки содержат автокорреляцию. Наличие автокорреляции нарушает одну из предпосылок нормальной линейной модели регрессии.

Проверим наличие гетероскедастичности. Т.к. у нас малый объем выборки (n=10) используем метод Голдфельда-Квандта.

- упорядочим значения n наблюдений по мере возрастания переменной x и разделим на две группы с малыми и большими значениями фактора x соответственно.

- рассчитаем остаточную сумму квадратов для каждой группы.

Вычисления представим в таблицах 3 и 4.

Таблица 3. Промежуточные вычисления для 1-го уравнения регрессии.

t xi yi yi* xi xi*xi
1 27 46 1242 729 47 -1 1
2 27 48 1296 729 47 1 1
3 28 47 1316 784 49,5 -2,5 6,25
4 28 52 1456 784 49,5 2,5 6,25
средн. знач. 27,5 48,25
1326,875
756,25
5310,00
3026,00
n 4
2,5
- 20,5
14,5

Таблица 4. Промежуточные вычисления для 2-го уравнения регрессии.

t xi yi yi* xi xi*xi
1 37 63 2331 1369 63,789 -0,789 0,623
2 38 69 2622 1444 64,582 4,418 19,519
3 39 62 2418 1521 65,375 -3,375 11,391
4 41 67 2747 1681 66,961 0,039 0,002
5 44 67 2948 1936 69,340 -2,340 5,476
6 46 73 3358 2116 70,926 2,074 4,301
средн. знач. 40,833 66,833
2729,028
1667,361
16424
10067
n 6
0,793
34,448
41,310

=
=
2,849

где

- остаточная сумма квадратов 1-ой регрессии,
- остаточная сумма квадратов 2-ой регрессии.