Федеральное агентство по образованию
Всероссийский заочный финансово-экономический институт
Кафедра экономико-математических методов и моделей
КОНТРОЛЬНАЯ РАБОТА
по дисциплине «Эконометрика»
Вариант № 3
Исполнитель: Глушакова Т.И.
Специальность: Финансы и кредит
Курс: 3
Группа: 6
№ зачетной книжки: 07ффд41853
Руководитель: Денисов В.П.
г. Омск 2009г.
Задачи
По предприятиям легкой промышленности региона получена информация, характеризующая зависимость объема выпуска продукции (Y, млн. руб.) от объема капиталовложений (X, млн. руб.). Требуется:
1. Найти параметры уравнения линейной регрессии, дать экономическую интерпретацию коэффициента регрессии.
- уравнение линейной регрессии, где - параметры уравнения. , где , - средние значения признаков. , где n – число наблюдений.Представим вычисления в таблице 1:
Таблица 1. Промежуточные расчеты.
t | xi | yi | yi* xi | xi*xi |
1 | 38 | 69 | 2622 | 1444 |
2 | 28 | 52 | 1456 | 784 |
3 | 27 | 46 | 1242 | 729 |
4 | 37 | 63 | 2331 | 1369 |
5 | 46 | 73 | 3358 | 2116 |
6 | 27 | 48 | 1296 | 729 |
7 | 41 | 67 | 2747 | 1681 |
8 | 39 | 62 | 2418 | 1521 |
9 | 28 | 47 | 1316 | 784 |
10 | 44 | 67 | 2948 | 1936 |
средн. знач. | 35,5 | 59,4 | ||
2108,7 | ||||
1260,25 | ||||
21734 | ||||
13093 | ||||
n | 10 | |||
1,319 | ||||
12,573 |
Таким образом, уравнение линейной регрессии имеет вид:
Коэффициент регрессии равен 1,319>0, значит связь между объемом капиталовложений и выпуском продукции прямая, увеличение объема капиталовложений на 1 млн. руб. ведет к увеличению объема выпуска продукции в среднем на 1,319 млн. руб. Это свидетельствует об эффективности работы предприятий.
2. Вычислить остатки; найти остаточную сумму квадратов; оценить дисперсию остатков
; построить график остатков.Вычислим прогнозное значение Y по формуле:
Остатки вычисляются по формуле:
.Представим промежуточные вычисления в таблице 2.
Таблица 2. Вычисление остатков.
69 | 62,695 | 6,305 | 39,75303 |
52 | 49,505 | 2,495 | 6,225025 |
46 | 48,186 | -2,186 | 4,778596 |
63 | 61,376 | 1,624 | 2,637376 |
73 | 73,247 | -0,247 | 0,061009 |
48 | 48,186 | -0,186 | 0,034596 |
67 | 66,652 | 0,348 | 0,121104 |
62 | 64,014 | -2,014 | 4,056196 |
47 | 49,505 | -2,505 | 6,275025 |
67 | 70,609 | -3,609 | 13,02488 |
Дисперсия остатков вычисляется по формуле:
.Построим график остатков с помощью MSExcel.
Рис. 1. График остатков.
3. Проверить выполнение предпосылок МНК
Проверим независимость остатков с помощью критерия Дарбина-Уотсона.
Вычислим коэффициент Дарбина-Уотсона по формуле:
.Данные для расчета возьмем из таблицы 2.
dw = 0,803
Сравним полученное значение коэффициента Дарбина-Уотсона с табличными значениями границ
и для уровня значимости 0,05 при k=1 и n=10. =0,88, =1,32, dw < d , значит, остатки содержат автокорреляцию. Наличие автокорреляции нарушает одну из предпосылок нормальной линейной модели регрессии.Проверим наличие гетероскедастичности. Т.к. у нас малый объем выборки (n=10) используем метод Голдфельда-Квандта.
- упорядочим значения n наблюдений по мере возрастания переменной x и разделим на две группы с малыми и большими значениями фактора x соответственно.
- рассчитаем остаточную сумму квадратов для каждой группы.
Вычисления представим в таблицах 3 и 4.
Таблица 3. Промежуточные вычисления для 1-го уравнения регрессии.
t | xi | yi | yi* xi | xi*xi | |||
1 | 27 | 46 | 1242 | 729 | 47 | -1 | 1 |
2 | 27 | 48 | 1296 | 729 | 47 | 1 | 1 |
3 | 28 | 47 | 1316 | 784 | 49,5 | -2,5 | 6,25 |
4 | 28 | 52 | 1456 | 784 | 49,5 | 2,5 | 6,25 |
средн. знач. | 27,5 | 48,25 | |||||
1326,875 | |||||||
756,25 | |||||||
5310,00 | |||||||
3026,00 | |||||||
n | 4 | ||||||
2,5 | |||||||
- 20,5 | |||||||
14,5 |
Таблица 4. Промежуточные вычисления для 2-го уравнения регрессии.
t | xi | yi | yi* xi | xi*xi | |||
1 | 37 | 63 | 2331 | 1369 | 63,789 | -0,789 | 0,623 |
2 | 38 | 69 | 2622 | 1444 | 64,582 | 4,418 | 19,519 |
3 | 39 | 62 | 2418 | 1521 | 65,375 | -3,375 | 11,391 |
4 | 41 | 67 | 2747 | 1681 | 66,961 | 0,039 | 0,002 |
5 | 44 | 67 | 2948 | 1936 | 69,340 | -2,340 | 5,476 |
6 | 46 | 73 | 3358 | 2116 | 70,926 | 2,074 | 4,301 |
средн. знач. | 40,833 | 66,833 | |||||
2729,028 | |||||||
1667,361 | |||||||
16424 | |||||||
10067 | |||||||
n | 6 | ||||||
0,793 | |||||||
34,448 | |||||||
41,310 |
где
- остаточная сумма квадратов 1-ой регрессии, - остаточная сумма квадратов 2-ой регрессии.