министерство образования российской федерации
магнитогорский государственный
технический университет им. г. и. носова
кафедра математики
аналитическая геометрия
Методическая разработка для самостоятельной
работы студентов по курсу «Высшая математика»
Магнитогорск
2007
Составитель: Акуленко И. В.
Аналитическая геометрия: Методическая разработка для самостоятельной работы студентов по курсу «Высшая математика» для студентов всех специальностей. Магнитогорск: МГТУ, 2007. 30 с.
Методическая разработка содержит перечень вопросов по изучаемому разделу, решение типовых задач по изучаемому разделу.
Рецензент: старший преподаватель Коротецкая В. А.
Введение
Методическая разработка предназначена для студентов всех специальностей.
Данная методическая разработка ставит своей целью помочь студенту самостоятельно овладеть методами решения задач по разделу «Аналитическая геометрия».
В методической разработке:
Методическая разработка предоставляет студенту широкие возможности для активной самостоятельной работы.
Прямая на плоскости
1)
2)
3)
4)
5)
6)
7)
8)
9)
10)
11)
12)
Пример 1. Даны вершины треугольника М1(2; 1), М2(-1; -1) и М3(3; 4). Составить уравнения его высот.
Решение.
Пусть М1N – высота треугольника М1М2М3. Рассмотрим два вектора
Значит,
Ответ:
Пример 2. Составить уравнения сторон и медиан треугольника с вершинами А(3; 2), В(5; -2), С(1; 0).
Решение.
1) Воспользуемся уравнением прямой,
АВ:
Найдем уравнение медианы АМ. Для этого найдем координаты точки М – середины отрезка ВС:
М(3; -1).
Уравнение АМ:
2) Найдем уравнения СВ и CN; N(x; y), где
Тогда ВС:
CN:
Ответ: АВ:
СN:
Пример 3. Даны вершины треугольника А(1; -1), В(-2; 1) и С(3;5). Составить уравнение перпендикуляра, опущенного из вершины А на медиану, проведенную из вершины В.
Решение.
|
По условию
Тогда искомое уравнение будет:
Ответ:
Пример 4. Составить уравнения сторон треугольника, зная одну из его вершин В(2;-7), а также уравнение высоты