Где k > -1,n > 0,достаточно положить
17
Интеграл
Где s > 0,разложить в ряд
=
где
Рассмотрим неполные гамма функции (функции Прима)
связанные неравенством
Разлагая,
18
Переходя к выводу формулы Стирлинга , дающей в частности приближенное значение n! при больших значениях n ,рассмотрим предварительно вспомогательную функцию
Непрерывна на интервале (-1,
то
И так производная непрерывна и положительна во всем интервале
19
Из предыдущего следует, что существует обратная функция,
Обращающаяся в 0 при v=0 и удовлетворяющая условие
Формулу Стирлинга выведем из равенства
полагая
Положим далее
20
имеем
полагая на конец ,
или
в пределе при
откуда вытекает формула Стирлинга
которую можно взять в виде
21
где
для достаточно больших
вычисление же производится при помощи логарифмов
если
приведем без вывода более точную формулу
где в скобках стоит не сходящийся ряд.
5. Примеры вычисления интегралов 22
Для вычисления необходимы формулы:
Г(
Вычислить интегралы
23
Запорізький державний університет
Зав. каф. Математичного аналізу
д. т. н. проф. ____ С.Ф. Шишканова
_________________________ 2002р.
ГАМА ФУНКЦІЇ
Ст..гр.. 8221-2
Керівник
Ст. викладач
Запоріжжя 2002.
Реферат............................................................. ...................................4
введение............................................................ ...................................5
1. Бета функции……………………………………………..............6
2. Гамма функции....................................... ...................................9
3. Производная гамма функции ............... ..................................11
4. Вычисление интегралов формула Стирлинга............................16
5. Примеры вычеслений............................. ..................................22
вывод................................................................ ..................................24
Список литературы……………………………………………..............25
Реферат
Обьект иследований: гамма и ее приложения.
В работе идет речь о представлении бета и гамма функций с помощью интегралов Эйлера соответствено первого и второго рода. И о их применении для вычисления интегралов.
Ключевые слова:
ГАММА И БЕТА ФУНКЦИЯ, ИНТЕГРАЛ ЭЙЛЕРА, ПРОИЗВОДНАЯ, ПРЕДЕЛ.
Выделяют особый класс функций, представимых в виде собственого либо несобственого интеграла, который зависит не только от формальной переменной, а и от параметра.