Смекни!
smekni.com

Построение и анализ однофакторной эконометрической модели (стр. 6 из 6)

Коэффициент корреляции между факторами Х1 и Х3=-0,8093

Коэффициент корреляции между факторами Х2 и Х3=-0,21466.

Вывод: на основании значения коэффициента корреляции rX2X3=-0,21466. можно сделать предварительный вывод о наличии возможной мультиколлинеарности между факторами Х2 и Х3.

Шаг 3. Критерий – Х2.

Расчетное значение критерия Х2 определяется по формуле:

,

где

-определитель корреляционной матрицы R-детерминант корреляции.

По заданной доверительной вероятности Р и числу степеней свободы

находится табличное значение критерия Х2табл, которое сравнивается с расчетным.

– если Х2расч< Х2табл, то нет оснований отклонить гипотезу об отсутствии мультиколлинеарности в массиве факторов, то есть с принятой надежностью можно утверждать, что в массиве факторов мультиколлинеарность отсутствует;

– если Х2расч> Х2табл, то гипотеза об отсутствии мультиколлинеарности в массиве факторов отклоняется, то есть с принятой надежностью можно утверждать, что в массиве факторов мультиколлинеарность существует.

Примечание: Если гипотеза об отсутствии мультиколлинеарности в массиве факторов принимается, то исследования мультиколлинеарности останавливаются.

Выберем уровень значимости ά=0,05, следовательно доверительная вероятность Р=0,95. Число степеней свободы k=3. Табличное значение критерия Х2табл2(0,95; 3)=7,8.

Исследование наличия мультиколлинеарности в массиве факторов по критерию Х2 в оболочке электронных таблиц Excel.

1. Находим определитель матрицы, используя встроенную функцию МОПРЕД.

2. Находим натуральный логарифм определителя, используя встроенную математическую функцию LN.

3. Находим расчетное значение критерия.

4. Вводим расчетное значение.

5. Делаем вывод о наличии мультиколлинеарности в массиве факторов, используя встроенную логическую функцию ЕСЛИ.

Таблица 3=Критерий Х2.

Таблица 3
Определитель корреляционной матрицы 0,326758051
Натуральный логарифм определителя -1,118535287
Расчетное значение критерия 8,016169558
Табличное значение критерия 7,8
Вывод о наличии в массиве факторов мультиколлиниарности В массиве факторов существует мультиколлинеарность

Выводы:

– на основании значения детерминанта корреляции

=0,33 (→0) можно сделать предварительный вывод о наличии мультиколлинеарности в массиве факторов;

– на основании критерия – Х2 с надежностью Р=0.95 можно утверждать, что в массиве факторов есть мультиколлинеарность.

Шаг 4. F-критерий Фишера.

Расчетные значения F-критерия для каждого фактора определяются по формуле:

, j=1,2…m

где

- диагональные элементы матрицы С=R-1;

По заданной доверительной вероятности Р и числом степеней свободы:

– k1=m-1 – степень свободы знаменателя;

– k2=n-m – степень свободы числителя(k1< k2).

Находится табличное значение F-критерия, которое сравнивается з расчетным:

– если Fjрасч< Fjтабл, то нет оснований отклонить гипотезу об отсутствии мультиколлинеарности между J-тым фактором и остальным массивом, то есть с принятой надежностью можно утверждать, что между J-тым фактором и другими мультиколлинеарность отсутствует;

– если Fjрасч> Fjтабл, то гипотеза об отсутствии мультиколлинеарности между J-тым фактором и остальным массивом отклоняется, то есть с принятой надежностью можно утверждать, что между J-тым фактором и другими мультиколлинеарность существует.

Выбираем уровень значимости ά=0,05, следовательно, доверительная вероятность Р=0,95. Число степеней свободы k1=2, k2=7. Табличное значение критерия F0,95(2; 7)=4,74.

Исследования наличия мультиколлинеарности каждого фактора со всеми другими факторами массива по F-критерию Фишера в оболочке электронных таблиц Excel.

1. Находим расчетные значения критерия F1, F2, F3 соответственно.

2. Вводим табличное значение критерия.

3. Делаем вывод об отсутствии мультиколлинеарности фактора Х1 и факторами Х2 и Х3, используя встроенную логическую функцию ЕСЛИ.

Поскольку функция будет копироваться в остальные ячейки столбца, то при введении адрес ячеек, которые сравниваются, нужно использовать абсолютную и относительную ссылку.

4. Копируем полученную формулу в две нижние ячейки и делаем выводы о наличии мультиколлинеарности фактора Х2 с факторами Х1 и Х3 и Х3 с факторами Х1 и Х2.


Таблица 4-F-критерий Фишера

Матрица, 2,91934678 -0,1508 2,3302
обратная корреляционной С -0,15080461 1,056096 0,1047
матрице 2,330157238 0,104663 2,9082
Значение F1 и вывод 6,71771373 Между факторм и другими мультиколлиниарность существует
Значение F2 и вывод 0,196335919 Между фактором и другими мультиколлинеарность отсутствует
Значение F3 и вывод 6,678648215 Между факторм и другими мультиколлиниарность существует
Табличное значение 4,74
F – критерия

Выводы:

– между фактором Х1 и факторами Х2 и Х3 существует мультиколлинеарность;

– между фактором Х2 и факторами Х1 и Х3 не существует мультиколлинеарности;

– между фактором Х3 и факторами Х2 и Х1 существует мультиколлинеарность;

Шаг 6. Расчет коэффициентов частичной корреляции.

Коэффициенты частичной корреляции рассчитываются по формулам:

, k=1; m, j=1; m

где Cjj, Ckk – диагональные элементы матрицы С=R-1

Ckj – элемент матрицы С=R-1, который находится в k-той строке и в j-том столбце.

Поскольку для массива факторов, которые исследуются m=3, то необходимо рассчитывать 3 коэффициента частичной корреляции r12(3), r13(2), r23(1).

Шаг 7. t – критерий Стьюдента.

Расчетные значения t – критерия для каждой пары факторов определяются по формулам:

, k=1; m, j=1; m,

где rkj – соответствующие коэффициенты частичной корреляции.

По заданной доверительной вероятности З и числом степеней свободы k=n-m находится табличное значение, которое сравнивается с расчетным:

– если tjjрасч<tjjтабл, то нет оснований отклонить гипотезу об отсутствии мультиколлиниарности между k-тым и j-тым факторами, то есть с принятой надежностью можно утверждать, что между k-тым и j-тым факторами мультиколлинеарность отсутствует.

– если tjjрасч>tjjтабл, то гипотеза об отсутствии мультиколлинеарности между k-тым и j-тым факторами отклоняется, то есть с принятой надежностью можно утверждать, что между k-тым и j-тым факторами мультиколлинеарность существует.

Выберем уровень значимости ά=0,05, таким образом, доверительная вероятность Р= 0,95. Число степеней свободы k=7. Табличное значение критерия t0,95(7)=1,89.

Исследование наличия мультиколлинеарности для каждой пары факторов по критерию Стьюдента в оболочке электронных таблиц Excel.

1. Расчетные значения находим по формуле.

2. Вводим табличное значение критерия.

3. Модуль расчетного значения критерия r12(3 находим, используя встроенную математическую функцию ABS, при этом делаем относительную ссылку на столбец.

4. Делаем вывод о наличии мультиколлиниарности между факторами Х1 и Х2, используя встроенную логическую функцию ЕСЛИ. При этом делаем относительную и абсолютную ссылку.

5. Полученную формулу копируем и делаем выводы о наличии мультиколлиниарности между факторами Х1 и Х3, Х2 и Х3.

Таблица 5 – t – критерий Стьюдента

Коэффициэнты частичной корреляции
r12 (3) 0,085885547
r13 (2) -0,79970784
r23(1) -0,10466296
Значение t-критерия Модули Выводы о наличии мультиколлиниарности
t12 (3) 0,228074533 0,228075 Между факторами отсутствует мультиколлинеарность
t13 (2) -3,52409329 3,524093 Между факторома существует мультиколлинеарность
t23(1) -0,27844144 0,278441 Между факторами отсутствует мультиколлинеарность
tтабл 1,89

Выводы: с надежностью Р=0,95 можно утверждать, что:

– между факторами Х1 и Х2 мультиколлинеарность отсутствует;

– между факторами Х1 и Х3 мультиколлинеарность существует;

– между факторами Х2 и Х3 мультиколлинеарность отсутствует;

Общий вывод: Таким образом между факторами 1 и 3 модели, т.е. между относительным уровнем затрат оборота и трудоемкостью существует мультиколлинеарность. Построить модель методом 1МНК нельзя, так как между факторами существует мультиколлинеарность.