Перевод целых чисел
1. основание новой системы счисления выразить в десятичной системе счисления и все последующие действия производить в десятичной системе счисления;
2. последовательно выполнять деление данного числа и получаемых неполных частых на основание новой системы счисления до тех пор, пока не получим неполное частное, меньшее делителя;
3. полученные остатки, являющиеся цифрами числа в новой системе счисления, привести в соответствие с алфавитом новой системы счисления;
4. составить число в новой системе счисления, записывая его, начиная с последнего частного.
Пример 1. Перевести число
в двоичную систему. Для обозначения цифр используем символику:Перевод дробных чисел.
1. основание новой системы счисления выразить в десятичной системе и все последующие действия производить в десятичной системе счисления;
2. последовательно умножать данное число и полученные дробные части произведений на основание новой системы до тех пор, пока дробная часть не станет равной нулю или не будет достигнута требуемая точность представления числа в новой системе счисления;
3. полученные целые части произведений, являющиеся цифрами числа в новой системе счисления, привести в соответствие с алфавитом новой системы счисления;
4. составить дробную часть числа в новой системе счисления, начиная с целой части первого произведения.
Перевод смешанных чисел, содержащих целую и дробную части, осуществляется в два этапа. Целая и дробная части исходного числа переводятся отдельно по соответствующим алгоритмам. В итоговой записи числа в новой системе счисления целая часть отделяется от дробной запятой (точкой).
Пример 4. Перевести десятичное число 315,1875 в восьмеричную и шестнадцатеричную системы счисления.
Из рассмотренных выше примеров следует:
.Задачи
№23
Перевести целые числа из десятичной системы счисления в троичную:
1. 523; 65; 7000; 2307; 325
2. 12; 524; 76; 121; 56.
№24
Перевести целые числа из десятичной системы счисления в восьмеричную:
1. 856; 664; 5012; 6435; 78;
2. 214; 89; 998; 653; 111.
№25
Перевести десятичные дроби в двоичную систему счисления. В двоичной записи числа сохранить шесть знаков.
1. 0,654; 0,321; 0,6135; 0,9876;
2. 0,55; 0,333; 0,1213; 0,453.
№26
Перевести десятичные дроби в шестнадцатеричную систему счисления. В новой записи дроби сохранить шесть знаков
1. 0,745; 0,101; 0,8453; 0,3451;
2. 0,8455; 0,225; 01234; 0,455
№27
Перевести смешанные десятичные числа в троичную и пятеричную системы счисления, оставить пять знаков в дробной части нового числа:
1. 40,5; 34,25; 124,44;
2. 78,333; 225,52; 90,99.
№28
Перевести смешанные десятичные числа в двоичную и восьмеричную системы счисления, оставив пять знаков в дробной части нового числа:
1. 21,5; 432,54; 678,333;
2. 12,25; 97,444; 7896,2.
№29
Перевести из десятичной системы счисления следующие числа:
1. 345 -
, 0,125 - , 45,65 - ;2. 675 -
, 0,333 - , 23,15.№30
Перевести из десятичной системы счисления следующие числа:
1. 1,25 -
, 675 - , 0,355 - ;2. 890 -
, 0,675 - , 12,35 -№31
Перевести из десятичной системы счисления следующие числа:
1. 425 -
, 0,425 - , 98,45 - ;2. 0,55 -
, 765 - , 765,75 - .№32
Перевести из десятичной системы счисления следующие числа:
1. 98 -
, 0,545 - , 87,325 - ;2. 0,775 -
, 907 - , 566,225 -Системы счисления, используемые в ЭВМ (с основанием
)Для того чтобы целое двоичное число записать в системе счисления с основанием
(4,8,16 и т.д.), нужно:1. данное двоичное число разбить справа налево на группы по n цифр в каждой;
2. если в последней левой группе окажется меньше n разрядов, то ее надо дополнить слева нулями до нужного числа разрядов;
3. рассмотреть каждую группу как n-разрядное двоичное число и записать ее соответствующей цифрой системе счисления с основанием
.Для того чтобы дробное двоичное число записать в системе счисления с основанием
, нужно:1. данное двоичное число разбить слева направо на группы по n цифр в каждой;
2. если в последней правой группе окажется меньше n разрядов, то ее надо дополнить справа нулями до нужного числа разрядов;
3. рассмотреть каждую группу как n-разрядное двоичное число и записать ее соответствующей цифрой системе счисления с основанием
.Для того чтобы произвольное двоичное число записать в системе счисления с основанием
, нужно:1. данное двоичное число разбить слева и справа (целую и дробную части) на группы по n цифр в каждой;
2. если в последних правой и левой группах окажется меньше n разрядов, то их нужно дополнить нулями до нужного числа разрядов;
3. рассмотреть каждую группу как n-разрядное двоичное число и записать ее соответствующей цифрой системе счисления с основанием
.Для того чтобы произвольное число, записанное в системе счисления с основанием
, перевести в двоичную систему счисления, нужно каждую цифру этого числа заменить ее n-разрядным эквивалентом в двоичной системе счисления.Применительно к компьютерной информации часто используются системы счисления с основанием 8 (восьмеричная) и 16 (шестнадцатеричная).
Пример 5. Перевести число
в двоичную систему.Для решения задачи воспользуемся приведенной ниже двоично-шестнадцатеричной таблицей.
Двоично-шестнадцатеричная таблица
16 | 2 | 16 | 2 |
0 | 0000 | 8 | 1000 |
1 | 0001 | 9 | 1001 |
2 | 0010 | A | 1010 |
3 | 0011 | B | 1011 |
4 | 0100 | C | 1100 |
5 | 0101 | D | 1101 |
6 | 0110 | E | 1110 |
7 | 0111 | F | 1111 |
В одном столбце таблицы помещены шестнадцатеричные цифры, напротив, в соседнем столбце – равные им двоичные числа. Причем все двоичные числа записаны в четырехзначном виде (там, где знаков меньше четырех, слева добавлены нули).
А теперь проделаем следующее: каждую цифру в шестнадцатеричном числе 15FC заменим на соответствующую ей в таблице четверку двоичных знаков. Иначе говоря, перекодируем число 15FC по таблице в двоичную форму. Получается:
0001 0101 1111 1100
Если отбросить нули слева (в любой системе счисления они не влияют на значения числа), то получим искомое двоичное число. Таким образом:
В справедливости этого равенства можно убедиться, производя тот же перевод через десятичную систему.
Пример 6. Перевести двоичное число 110111101011101111 в шестнадцатеричную систему.
Разделим данное число на группы по четыре цифры, начиная справа. Если в крайней левой группе окажется меньше четырех цифр, то дополним ее нулями.
0011 0111 1010 1110 1111
А теперь, глядя на двоично-шестнадцатеричную таблицу, заменим каждую двоичную группу на соответствующую шестнадцатеричную цифру.
3 7 А E F
Следовательно:
Пример 7. Перевести смешанное число
в шестнадцатеричную систему.