Смекни!
smekni.com

Решение задач по теории вероятности (стр. 5 из 16)

2.21. Вероятность того, что дилер, торгующий ценными бумагами, продаст их, равна 0,7. Сколько должно быть ценных бумаг, чтобы можно было утверждать с вероятностью 0,996, что доля проданных среди них отклонится от 0,7 не более, чем на 0,04 (по абсолютной величине)?

2.22. У страховой компании имеются 10 000 клиентов. Каждый из них, страхуясь от несчастного случая, вносит 500 руб. Вероятность несчастного случая 0,0055, а страховая сумма, выплачиваемая пострадавшему, составляет 50 000 руб. Какова вероятность того, что:

а) страховая компания потерпит убыток;

б) на выплат страховых сумм уйдет более половины всех средств поступивших от клиентов?

2.23. Первый прибор состоит из 10 узлов, второй из 8 узлов. За время t каждый из узлов первого прибора выхода из строя, независимо от других, с вероятностью 0,1, второго – с вероятностью 0,2. Найти вероятность того, что за время t в первом приборе выйдет из строя хотя бы один узел, а во втором – по крайней мере два узла.

2.24. Студент рассматриваемого вуза по уровню подготовленности с вероятностью 0,3 является «слабым», с вероятностью 0,5 – «средним», с вероятностью 0,2 – «сильным». Какова вероятность того, что из наудачу выбранных 6 студентов вуза:

а) число «слабых», «средних» и «сильных» окажется одинаковым;

б) число «слабых» и «сильных» окажется одинаковым?


3 ГЛАВА

Случайные величины

В главе рассматриваются:

- понятие случайной величины, непрерывной случайной величины;

- закон распределения дискретной случайной величины;

- математическое ожидание дискретной случайной величины;

- дисперсия дискретной случайной величины;

- функция распределения случайной величины;

- плотность вероятности;

- мода, медиана, квантили и моменты случайных величин.

Типовые задачи

Пример 3.1

По многолетним статистическим данным известно, что вероятность рождения мальчика равна 0,515. Составить закон распределения случайной величины X – числа мальчиков в семье из 4 детей. Найти математическое ожидание и дисперсию этой случайной величины.

Решение

Число мальчиков в семье из п = 4 представляет случайную величину Х с множеством значений X= т = 0, 1, 2, 3, 4, вероятности которых определяются по формуле Бернулли:

, где q = 1-p

В нашем случае n = 4, p = 0,515, q = 1-p = 0,485

Вычислим

;

;

;

;

.

(Здесь учтено, что

= 1,
= 4,
,
,
= 1)

Ряд распределения имеет вид

X = m

xi

0

1

2

3

4

pi

0,055

0,235

0,375

0,265

0,070

Убеждаемся, что

Математическое ожидание М{Х) и дисперсию D(X) можно найти, как обычно, по формулам (3.3) и (3.11). Но в данном случае, учитывая, что закон распределения случайной величины X биномиальный, можно воспользоваться простыми формулами (4.2) и (4.3):

M(X) = np = 4*0,515 = 2,06,

D(X) = npq = 4*0,515*0,485 = 0,999.

Пример 3.2

Радист вызывает корреспондента, причем каждый последующий вызов производится лишь в том случае, если предыдущий вызов не принят. Вероятность того, что корреспондент примет вызов, равна 0,4. Составить закон распределения числа вызовов, если:

а) число вызовов не более 5;

б) число вызовов не ограничено.

Найти математическое ожидание и дисперсию этой случайной величины.

Решение:

а) Случайная величина X – число вызовов корреспондента – может принимать значения 1, 2, 3, 4, 5. Обозначим событие Ai – i-й вызов принят (i = 1, 2, 3, 4, 5). Тогда вероятность того, что первый вызов принят, P(X=1)=P(A1)=0,4.

Второй вызов состоится лишь при условии, что первый вызов не принят, т.е.

Аналогично

Пятый вызов при любом исходе (будет принят, не принят) I последний. Поэтому

(Вероятность Р(Х=5) можно найти и иначе, учитывая, что последний вызов будет или принят, или нет, т.е.

)

Ряд распределения случайной величины X имеет вид

X:

xi

1

2

3

4

5

pi

0,4

0,24

0,144

0,0864

0,1296

Проверяем, что

По формуле (3.3) вычислим математическое ожидание:

Так как M(X) – нецелое число, то находить дисперсию D(X) проще не по основной формуле (3.11), а по формуле (3.16), т.е. D(X) = M(X2) – а2.

Вычислим

Теперь D(X) = 7,2784 – 2,30562 = 1,9626

б) Так как число вызовов не ограничено, то ряд распределения случайной величины Х примет вид

X:

xi

1

2

3

4

n

pi

0,4

0,24

0,144

0,0864

0,6n-1*0,4

Проверяем, что

(использовали формулу суммы сходящегося (│q│< 1) геометрического ряда:

при a = 1, q= 0,6)

По формуле (3.4) вычислим математическое ожидание

Для вычисления суммы полученного ряда воспользуемся формулой:

(т.е. сумма данного ряда является производной сходящегося геометрического ряда при│q│=│x│<1). При х = 0,6.

, т.е. M(X) = 0,4*6,25 = 2,5

По формуле (3.12) вычислим дисперсию: D(X) = M(X2) – a2.

Вначале найдем

Для вычисления суммы полученного ряда рассмотрим сумму ряда

S1(x) при │х│< 1:

S1(x) при х = 0,6:

, т.е. M(X2) = 0,4*25=10

Теперь D(X) = 10-2,52 = 3,75.

Пример 3.3

Среди 10 изготовленных приборов 3 неточных. Составить закон распределения числа неточных приборов среди взятых наудачу четырех приборов. Найти математическое ожидание и дисперсию этой случайной величины.

Решение

Случайная величина X – число неточных приборов среди четырех отобранных – может принимать значения i - 0, 1, 2, 3.

Общее число способов выбора 4 приборов из 10 определяется числом сочетаний

. Число способов выбора четырех приборов, среди которых i неточных приборов и 4-i точных (i = 0, 1, 2, 3), по правилу произведения определится произведением числа способов выбора i неточных приборов из 3 неточных
на число способов выбора 4-i точных приборов из 7 точных
, т.е.
*
. Согласно классическому определению вероятности