Останні рядки, тобто вектори α1, α2 та α3 є лінійно незалежними, бо і лінійно незалежними є їх частини, відповідно,
Завдання 2. Знайти фундаментальну систему розв'язків.
Розв'язання. Кожна система лінійних однорідних рівнянь є сумісною. Знаходимо ранг матриці А цієї системи.
Матриця А — ненульова, отже,
Обчислюємо мінори третього порядку матриці А, одержані обведенням відмінного від нуля мінора
Таким чином, ранг матриці А дорівнює 2. Зважаючи на те, що її базовий мінор
Додамо до другого рівняння перше помножене на 3
Складемо таблицю для невідомих x1, x2, x3, x4, відокремивши в ній головні (x3 та x4) і вільні (х1 та х2) невідомі. Надаємо вільним невідомим (х1 та х2) такі, наприклад, значення: (1, 0) =
| | | |
| | | |
1 | 0 | -3 | 2 |
0 | 1 | -3 | 2 |
Другий рядок таблиці
Висновок
Можна визначити такий основний алгоритм знаходження фундаментальної системи розв’язків лінійних однорідних рівнянь:
1. Виписуємо матрицю системи, при цьому вибираємо один з мінорів, що відмінний від нуля найвищого порядку. Його назвемо базою мінор.
2. Тоді в розглядуваній СЛОР відкидаємо всі ті рівняння коефіцієнти при яких не увійшли до базового мінора.
3. В рівняннях, що залишилися переносимо у праву частину ті члени коефіцієнти при невідомих у яких не увійшли до базового мінора. Ці невідомі назвемо вільними невідомими. Ті ж невідомі, що залишилися у тій лівій частині назвемо – головними.
4. Виражаємо головні невідомі через вільні невідомі. Значення для вільних невідомих різними способами підбираємо так, що набори, які утворилися при цьому є лінійно незалежними.
5. Підставляючи ці значення у розв’язок для головних невідомих одержуємо фундаментальну систему розв’язків.
Використана література
1. Курош А. Г., “ Курс высшей алгебры ”, изд. 10, <<Наука>>, Москва, 1971 г., 432 стр.
2. Ф. Г. Ващук, С. С. Поляк, І. О. Пономарьова, “ Практикум з алгебри ”, Ужгород, 1997 р., 147ст.
3. Овчинников П. Ф., Яремчук Ф. П., Михайленко В. М.. Высшая математика – К.: Вища шк. Главное изд., 1987 г., 552 стр.
4. Ващук Ф. Г., Поляк С. С.. Практикум з вищої математики. Частина І: Елементи алгебри та аналітичної геометрії. – Ужгород: Гражда, 2005. – 294 с.: іл.