Смекни!
smekni.com

Применение нейросетевых моделей для определения динамики цен на золото (стр. 2 из 4)

Для сжатия и визуализации данных в статистике разработан метод линейных главных компонент. Нейросети-автоассоциаторы позволяют эффективнее сжимать данные за счет построения нелинейных отображений и визуализировать данные в пространстве меньшего числа нелинейных главных компонент.

По сравнению с методами непараметрической статистики нейронная сеть с радиальными базисными функциями позволяет сокращать число ядер, оптимизировать координаты и размытость каждого ядра. Это позволяет при сохранении парадигмы локальной ядерной аппроксимации ускорять дальнейший процесс принятия решения.

При обучении нейронной сети вместо критерия качества в виде наименьших квадратов можно использовать робастные критерии, дополнительно вести оптимизацию и других свойств нейронной сети (например, добавляя критерии регуляризации решения или оптимизации структуры нейронной сети). Алгоритмы обучения нейронной сети при этом остаются неизменными.

Необходимость решения прямой и обратной задач обычно требует построения двух моделей. При использовании же нейронных сетей можно обойтись одной сетью, обученной решать прямую задачу.

Также нейронная сеть одновременно может решать нескольких задач (при наличии у нее нескольких выходов). [5]

Простота в использовании. Нейронные сети учатся на примерах. Пользователь нейронной сети подбирает представительные данные, а затем запускает алгоритм обучения, который автоматически воспринимает структуру данных. При этом от пользователя требуется какой-то набор эвристических знаний о том, как следует отбирать и подготавливать данные, выбирать нужную архитектуру сети и интерпретировать результаты, однако уровень знаний, необходимый для успешного применения нейронных сетей, гораздо скромнее, чем, например, при использовании традиционных методов статистики. [4]


2 Применение нейросетей и их классификация

2.1 Задачи нейросети

Любая работа с нейросетью начинается с определения задач, которые она должна решать, т.е. с определения функций выходов. В общем случае сеть может решать как задачи классификации (дискретные выходы), так и задачи предсказания (непрерывные выходы). Из всего множества решаемых нейросетями задач для трейдинга наиболее важными являются:

- классификационный прогноз направления;

- прогноз цены;

- выработка торговых сигналов;

- прогнозирование индикаторов;

- определение уровней стопов;

- определение «похожих» дней;

- определение кризисных и аномальных точек;

- предсказание наступления кризиса;

- прогноз развития кризисной ситуации.

Конечной целью любого вида анализа, в том числе и нейронных технологий, является выработка торговых сигналов. Настройка нейросети для генерации торговых сигналов - задача сложная и требующая углубленного понимания рынка и нейросетей. Поэтому, следует сначала научиться избегать ошибок на более простых, но не менее важных задачах - прогнозировании цен и индикаторов. [2]

2.2 Известное применение нейросетей

1 Распознавание образов и классификация

В качестве образов могут выступать различные по своей природе объекты: символы текста, изображения, образцы звуков и т. д. При обучении сети предлагаются различные образцы образов с указанием того, к какому классу они относятся. Образец, как правило, представляется как вектор значений признаков. При этом совокупность всех признаков должна однозначно определять класс, к которому относится образец. В случае если признаков недостаточно, сеть может соотнести один и тот же образец с несколькими классами, что неверно. По окончании обучения сети ей можно предъявлять неизвестные ранее образы и получать ответ о принадлежности к определённому классу.

Топология такой сети характеризуется тем, что количество нейронов в выходном слое, как правило, равно количеству определяемых классов. При этом устанавливается соответствие между выходом нейронной сети и классом, который он представляет. Когда сети предъявляется некий образ, на одном из её выходов должен появиться признак того, что образ принадлежит этому классу. В то же время на других выходах должен быть признак того, что образ данному классу не принадлежит. Если на двух или более выходах есть признак принадлежности к классу, считается что сеть «не уверена» в своём ответе.

2 Принятие решений и управление

Эта задача близка к задаче классификации. Классификации подлежат ситуации, характеристики которых поступают на вход нейронной сети. На выходе сети при этом должен появиться признак решения, которое она приняла. При этом в качестве входных сигналов используются различные критерии описания состояния управляемой системы.

3 Кластеризация

Под кластеризацией понимается разбиение множества входных сигналов на классы, притом, что ни количество, ни признаки классов заранее не известны. После обучения такая сеть способна определять, к какому классу относится входной сигнал. Сеть также может сигнализировать о том, что входной сигнал не относится ни к одному из выделенных классов — это является признаком новых, отсутствующих в обучающей выборке, данных. Таким образом, подобная сеть может выявлять новые, неизвестные ранее классы сигналов. Соответствие между классами, выделенными сетью, и классами, существующими в предметной области, устанавливается человеком. Кластеризацию осуществляют, например, нейронные сети Кохонена.

4 Прогнозирование

Способности нейронной сети к прогнозированию напрямую следуют из ее способности к обобщению и выделению скрытых зависимостей между входными и выходными данными. После обучения сеть способна предсказать будущее значение некой последовательности на основе нескольких предыдущих значений и/или каких-то существующих в настоящий момент факторов. Следует отметить, что прогнозирование возможно только тогда, когда предыдущие изменения действительно в какой-то степени предопределяют будущие.

5 Аппроксимация

Нейронные сети — могут аппроксимировать непрерывные функции. Доказана обобщённая аппроксимационная теорема: с помощью линейных операций и каскадного соединения можно из произвольного нелинейного элемента получить устройство, вычисляющее любую непрерывную функцию с некоторой наперёд заданной точностью. Это означает, что нелинейная характеристика нейрона может быть произвольной. От выбора нелинейной функции может зависеть сложность конкретной сети, но с любой нелинейностью сеть остаётся универсальным аппроксиматором и при правильном выборе структуры может достаточно точно аппроксимировать функционирование любого непрерывного автомата.

6 Сжатие данных и ассоциативная память

Способность нейросетей к выявлению взаимосвязей между различными параметрами дает возможность выразить данные большой размерности более компактно, если данные тесно взаимосвязаны друг с другом. Обратный процесс — восстановление исходного набора данных из части информации — называется (авто)ассоциативной памятью. Ассоциативная память позволяет также восстанавливать исходный сигнал/образ из зашумленных/поврежденных входных данных. Решение задачи гетероассоциативной памяти позволяет реализовать память, адресуемую по содержимому. [2]

2.3 Классификация нейросетей

· по типу входной информации:

- Аналоговые нейронные сети (используют информацию в форме действительных чисел);

- Двоичные нейронные сети (оперируют с информацией, представленной в двоичном виде).

· по характеру обучения

- Обучение с учителем — выходное пространство решений нейронной сети известно;

- Обучение без учителя — нейронная сеть формирует выходное пространство решений только на основе входных воздействий. Такие сети называют самоорганизующимися;

- Обучение с подкреплением — система назначения штрафов и поощрений от среды.

· по характеру настройки синапсов

- Сети с фиксированными связями (весовые коэффициенты нейронной сети выбираются сразу, исходя из условий задачи, при этом:

,где W — весовые коэффициенты сети);

сети с динамическими связями (для них в процессе обучения происходит настройка синаптических связей, то есть

, где W — весовые коэффициенты сети).

· по времени передачи сигнала

В ряде нейронных сетей активирующая функция может зависеть не только от весовых коэффициентов связей wij, но и от времени передачи импульса (сигнала) по каналам связи τij. Поэтому в общем виде активирующая (передающая) функция связи cij от элемента ui к элементу uj имеет вид:

Тогда синхронной сетью называют такую сеть, у которой время передачи τij каждой связи равно либо нулю, либо фиксированной постоянной τ. Асинхронной называют такую сеть, у которой время передачи τij для каждой связи между элементами ui и uj свое, но тоже постоянное.

· по характеру связей

- Сети прямого распространения (Feedforward)

Все связи направлены строго от входных нейронов к выходным. Примерами таких сетей являются перцептрон Розенблатта, многослойный перцептрон, сети Ворда.

- Рекуррентные нейронные сети‎

Сигнал с выходных нейронов или нейронов скрытого слоя частично передается обратно на входы нейронов входного слоя (обратная связь). Рекуррентная сеть Хопфилда «фильтрует» входные данные, возвращаясь к устойчивому состоянию и, таким образом, позволяет решать задачи компрессии данных и построения ассоциативной памяти. Частным случаем рекуррентных сетей является двунаправленные сети. В таких сетях между слоями существуют связи как в направлении от входного слоя к выходному, так и в обратном. Классическим примером является Нейронная сеть Коско.