Смекни!
smekni.com

Статическое моделирование систем (стр. 3 из 12)

Границы доверительного интервала вычислены по формулам (1.22-1.23).

, (1.22)

, (1.23)

Определенный доверительный интервал (1.21) является приближенным, так как вместо точного значения дисперсии используется ее оценка Dn. Величина tγ определяет для нормального закона число стандартных отклонений, которое нужно отложить вправо и влево от оценки математического ожидания для того, чтобы вероятность попадания в полученный интервал была равна γ.

Существуют более точные методы определения доверительного интервала. Например, методы определения доверительного интервала для оценки математического ожидания на основе распределения Стьюдента, где вместо квантиля нормального распределения используется квантиль распределения Стьюдента, который также находится по таблицам.

, (1.24)

,

, (1.25)

Теоретическое значение математического ожидания

входит в доверительный интервал. Аналогично может быть получен доверительный интервал для дисперсии. Оценка дисперсии также представляет собой сумму n случайных величин. Однако эти величины уже нельзя считать независимыми, так как в любую из них входит оценка Xmean. Но и этом случае при увеличении n закон распределения их суммы также приближается к нормальному. Поэтому доверительный интервал для дисперсии определяется так же, как и для математического ожидания и имеет вид:

Iγ=(Dn-ε, Dn+ε),

где ε вычисляется по формуле (1.26):

, (1.26)

где Dd – дисперсия оценки Dn.

, (1.27)

Конечные формулы границ доверительного интервала имеют вид:

,
(1.28)

,
(1.29)

Более точный доверительный интервал для оценки дисперсии может быть получен при нормальном распределении на основе распределения χ². Однако в отличие от нормального распределения и распределения Стьюдента распределение χ² не является симметричным распределением. Поэтому выберем интервал Iγ так, чтобы вероятность выхода величины вправо и влево были одинаковы и равны

и
. Чтобы построить интервал с таким свойством, необходимо воспользоваться таблицами распределения χ². В этом случае доверительный интервал для оценки дисперсии в соответствии с обозначением примет вид:

,

где Dn – несмещённая оценка,

χ1², χ2² - могут быть найдены по стандартной программе Mathcad (1.30-1.31).

, (1.30)

, (1.31)

Конечные формулы границ доверительного интервала имеют вид:

,
,

,

Несмещённая оценка

входит в доверительный интервал (D=σ², σ² - стандартное отклонение).

1.4 Проверка гипотезы о нормальном распределении случайной величины с помощью критерия Пирсона при определённом уровне значимости

На основании полученной выборки значений случайной величины необходимо проверить гипотезу о её нормальном распределении. Рассмотрим один из наиболее часто применяемых критериев согласия – критерий Пирсона, который имеет следующий вид:

, (1.32)

где νk – число точек в k-ом интервале гистограммы (частота попадания) pk – теоретические вероятности попадания точек в k-ый интервал, которые могут быть вычислены по формуле (1.33) n – объём выборки случайной величины, К – количество интервалов

(1.33)

где f(х) – плотность вероятности теоретического распределения (1.15)

Величина (1.32) распределена по закону с К-1 степенями свободы. Если теоретические вероятности зависят от q неизвестных параметров, оцениваемых по выборке, то количество степеней свободы равно K-q-1.

Для распределения χ2 составлены специальные таблицы. В них по заданному числу степеней свободы ν и по заданной вероятности α (уровню значимости) можно найти граничное табличное значение критерия

.

Если теперь

, то гипотеза не противоречит статистическим данным и ее можно считать правдоподобной с уровнем значимости .

Если же

, то статистические данные следует считать противоречащим гипотезе о том, что плотность распределения величины Х есть f(x) (1.15). Пусть K – количество интервалов, на которые разбит диапазон изменения каждой переменной. Количество интервалов К вычисляется по правилу Стургерса. Для вычисления используется встроенная функция Mathcad (1.34):

, (1.34)

где n – количество реализаций случайного процесса.

Тогда границы интервалов можно вычислить по формулам:

,
,

где Xmax, Xmin – максимальное и минимальное значение реализации случайного процесса.

Для определения частоты попадания выборочных значений в каждый k-ый интервал по переменной Х воспользуемся формулой (1.35):

, (1.35)

где k=1..K – номер интервала,

uk – точки, лежащие на границе интервала,

n – количество реализаций случайной величины

Сумма частот всех интервалов должна быть равна количеству реализаций случайной функции n, так как все точки функции распределены на K интервалах.

Теоретическая вероятность попадания случайной величины X в интервал для нормального распределения вычисляется по формуле (1.36):

, (1.36)

Статистика критерия Пирсона

.

Табличное значение статистики при уровне значимости =0.01 и количестве степеней свободы =7 вычисляется с помощью встроенной функции Mathcad (1.38):

,
(1.37)

Очевидно, что

. Это значит, что гипотеза о нормальном распределении случайной величины принимается.

Таким образом, в данной главе была построена гистограмма распределения с отображением эмпирической и теоретической плотностей распределения, найдены математическое ожидание

, дисперсия
.

Построен доверительный интервал для математического ожидания двумя способами:

1. Приближенный доверительный интервал для оценки математического ожидания. Его границы

и
.

2. Доверительный интервал для оценки математического ожидания на основе распределения Стьюдента. Его границы

и
.

Теоретическое значение математического ожидания

попадает в доверительный интервал.

Построен доверительный интервал для дисперсии двумя способами:

1. Приближенный доверительный интервал для оценки дисперсии. Его границы

и
.