Смекни!
smekni.com

Решение уравнений в конечных разностях (стр. 2 из 3)

- вектор начальных значений.

Основной проблемой процесса численного интегрирования является выбор величины шага h. Формула Эйлера вносит в процесс численного решения погрешность, пропорциональную h. Это несложно увидеть, если сравнить вычисляемое при интегрировании уравнения выражение с первыми слагаемыми ряда Тейлора для точки

:

.

По Эйлеру

,

или иначе:

,

а по Тейлору:

,

или иначе:

.

Отбрасываемые члены разложения

характеризуют погрешность формулы Эйлера, в которую входят слагаемые с h в первой степени и выше.

Результат интегрирования можно улучшить, если по найденному значению

,
вычислить значение производной, т.е.
, и в формулу Эйлера ввести среднее арифметическое двух производных: для начала и для конца интервала
. Модифицированная формула примет следующий вид:

Такого рода уточнения (итерации) можно повторять, пока в выражении

модуль разности станет
.

Погрешность модифицированной формулы будет пропорциональна

. Это показывается аналогично предыдущему сопоставлению.

Продифференцируем исходное уравнение

и подставим выражение производной в ряд Тейлора. В результате получим:

Аналогичное выражение для первых двух слагаемых и остаточного ряда второй степени от h получается и для модифицированной формулы Эйлера, если в последней осуществить разложение

в ряд Тейлора по степеням h:

Усреднение производных с итерационным уточнением их для нескольких точек интервала особенно наглядно представлено в формулах Рунге-Кутта четвертого порядка

:

где

Здесь производная вычисляется в трех точках интервала h (на концевых точках и дважды в средней точке интервала для итерационного уточнения), после чего окончательное приращение находится как взвешенное среднее.

4. Интерполяционные рекуррентные формулы

Достоинством методов Эйлера и Рунге-Кутта является их самоначинаемость независимо от порядка формулы, а основной недостаток в том, что число вычислений правой части неоднородной системы дифференциальных уравнений равно порядку формулы.

В этом плане выгодно отличаются формулы интегрирования, построенные на основе интерполяционных многочленов, опорными точками которого являются предыдущие, уже вычисленные значения переходного процесса. Широко используемым методом интегрирования с таким подходом могут служить формулы интегрирования Адамса.

4.1 Интерполяция конечными разностями “назад”

Возьмем в качестве примера интерполяционный многочлен Ньютона для интерполирования функции “назад”, т.е. в сторону меньших значений независимой переменной по отношению к текущему ее значению:

Построение такого интерполяционного многочлена удобно осуществлять с применением повторных конечных разностей “назад”:

.

Взаимосвязь оператора

и рассмотренных выше операторов
и
характеризуется следующими соотношениями:

Выразим ординату функции, отстоящую от текущей на k шагов назад, через ординату функции

в текущей точке и выполним ряд эквивалентных преобразований с названными линейными операторами:

Если положить

, то

Таким образом, интерполяционный многочлен Ньютона для интерполирования “назад” принимает вид:

,

где

принимает целые значения для
,

- i-тая повторная конечная разность “вперед", вычисляемая по значениям функции в соответствии с таблицей:
-4
-3
-
-2
- -
-1
- - -
0
- - -
1
- - -

В таблице жирным шрифтом выделены конечные разности от нулевого порядка и выше, которые входят в интерполяционную формулу Ньютона.

4.2 Рекуррентные формулы Адамса

Пусть теперь требуется найти решение уравнения

.