Смекни!
smekni.com

Эконометрическая модель национальной экономики Турции 2 (стр. 3 из 7)

Отметим, что наличие множества прикладных моделей для решения одного и того же класса задач не случайно. Наиболее ярко это проявляется при построении макроэкономических моделей, когда, например, одна и та же функция потребления может включать в себя разный набор экономических пере­менных.

Рассмотрим основные направления практического использо­вания эконометрических систем уравнений (больших эконометрических моделей).

Наиболее широко системы одновременных уравнений применяются для построения макроэкономических моделей функционирования экономики той или иной страны. Большин­ство из них представляют собой мультипликаторные модели кейнсианского типа с той или иной степенью сложности. Стати­ческая модель Кейнса для описания народного хозяйства страны в наиболее простом варианте имеет следующий вид:

C = a + by + e,

Y = C + I,

где С — личное потребление в постоянных ценах;

у - национальный доход в постоянных ценах;

е - случайная составляющая;

I - инвестиции в постоянных ценах.

В силу наличия тождества в модели (второе уравнение систе­мы) структурный коэффициент bне может быть больше 1. Он ха­рактеризует предельную склонность к потреблению. Так, если b = 0,65, то из каждой дополнительной 1 тыс. руб. дохода на по­требление расходуется в среднем 650 руб. и 350руб. инвестирует­ся т. е. С и у выражены в тысячах рублей. Если b > 1 , то у < C + 1, т. е. на потребление расходуются не только доходы, но и сбереже­ния. Параметр а Кейнс истолковывал как прирост потребления за счет других факторов. Поскольку прирост во времени может быть не только положительным, но и отрицательным (сниже­ние), такой вывод возможен. Однако суждение о том, что пара­метр а характеризует конкретный уровень потребления, обуслов­ленный влиянием других факторов, неправильно.[6]

Структурный коэффициент bиспользуется для расчета муль­типликаторов. По данной функции потребления можно опреде­лить два мультипликатора - инвестиционный мультипликатор потребления Мс и инвестиционный мультипликатор националь­ного дохода Му.

Инвестиционный мультипликатор потребления рассчитыва­ется по формуле

Mc = b/ (1-b)

Инвестиционный мультипликатор национального дохода можно определить как

Му = 1 / (1 — b),

Рассматриваемая модель Кейнса точно идентифицируема, и для получения величины структурного коэффициента bприме­няется КМНК, т.е. строится система приведенных уравнений.

Таким образом, приведенная форма модели содержит мульти­пликаторы, интерпретируемые как коэффициенты линейной ре­грессии, отвечающие на вопрос, на сколько единиц изменится значение эндогенной переменной, если экзогенная переменная изменится на одну единицу своего измерения. Этот смысл коэф­фициентов приведенной формы делает приведенную модель удобной для прогнозирования.

В более поздних исследованиях статическая модель Кейнса включала уже не только функцию Потребления, но и функцию сбережений:

C = a + by + e1,

r = T + K(C + I) + e2,

y = C +I + r,

где С, y и I – те же по смыслу переменные, что и в предыдущей модели;

r - сбережения.

Данная модель содержит три эндогенные переменные — С, г, у и одну экзогенную переменную I.Система идентифицируема: в первом уравнении Н = 2 и D =1, во втором H=1 и D = 0;С + I рассматривается как предопределенная переменная.

Наряду со статическими широкое распространение получили динамические модели экономики. В отличие от статических они содержат в правой части лаговые пе­ременные, а также учитывают тенденцию (фактор времени). Например, модели Клейна, разработанные им для экономики США в 1950-1960 гг. В упрощенном варианте модель Клейна рас­сматривается как конъюнктурная модель.

Ct = b1St + b2Pt + b3 + e1,

It = b4Pt + b5Pt-1 + b6 +e2,

St = b7Rt + b8Rt-1 + b9t + b10 + e3,

Rt = St + Pt + Tt,

Rt = Ct + It + Gt,

где Ct - функция потребления в период t;

St - заработная плата в период t;

Pt - прибыль в период t;

Pt-1 - прибыль в период t - 1, т. е. в предыдущий год;

Rt - общий доход в период t;

Rt-1 - общий доход в предыдущий период;

t - время;

Tt- чистые трансферты в пользу администрации в период t;

It - капиталовложения в период t,

Gt - спрос административного аппарата, правительственные расхо­ды в период времени t.

Модель содержит пять эндогенных переменных - Ct ,It,St ,Rt (расположены в левой части системы) и Pt (последняя — зависи­мая переменная, определяемая по первому тождеству), три экзо­генные переменные - Tt,Gtt и две предопределенных, лаговых пе­ременных - Pt-1 и Rt-1 .Как и большинство моделей такого типа, данная модель сверхидентифицируема и решаема ДМНК. Для прогнозных целей используется приведенная форма модели

Ct = d1T + d2G + d3t + d4Pt-1 + d5Rt-1 +u1,

It = d6T + d7G + d8t + d9Pt-1 + d10Rt-1 +u2,

St = d11T + d12G + d13t + d14Pt-1 + d15Rt-1 +u3,

Rt = d16T + d17G + d18t + d19Pt-1 + d20Rt-1 +u4,

Pt = d21T + d22G + d23t + d24Pt-1 + d25Rt-1 +u5.

В этой системе мультипликаторами являются коэффициенты при обычных экзогенных переменных. Они отражают влияние экзогенной переменной на эндогенную переменную. Мульти­пликаторами в нашей системе выступают коэффициенты при Т и С. Коэффициенты d1,d6, d11, d16, d21- мультипликаторы чистых трансфертов в пользу администрации относительно личного по­требления d1, инвестиций d6, заработной платы d11, дохода d16 и прибыли d21. Соответственно коэффициенты d2, d7, d12, d17,d22 являются мультипликаторами правительственных расходов относительно соответствующих эндогенных переменных.[6]

Динамическая модель может и не содержать учет тенденции, но лаговые переменные в ней обязательны. Динамическая мо­дель Кейнса представлена следующими тремя уравнениями:

Ct = a + b1Y1 + b2Yt-1 +e1,

Yt = Ct + Gt + It + Lt,

Pt = Yt + Zt.

Yt, -- имеющийся в распоряжении доход в период времени t;

Ct, -- частное потребление в период времени t;

Pt -- валовой национальный продукт (ВНП) в период времени t.

Кроме того, модель содержит пять предопределенных переменных: Yt-1 - доход предыдущего года;

Ct, -- частное потребление;

It - валовые капиталовложения;

Lt - изменение складских запасов;

Zt - сальдо платежного баланса.

Случайная переменная e1 характеризует ошибки в первом уравнении ввиду его статистического характера. Параметр а отра­жает влияние других не учитываемых в данном уравнении факто­ров потребления (например, цен). Первое уравнение данной системы является сверхидентифицируемым, а второе и третье — определениями.

Если в модели Кейнса доход рассматривается как лаговая пе­ременная, то в других исследованиях функции потребления в ви­де лаговой переменной используется потребление предыдущего года, т. е. считается, что потребление текущего года зависит не только от дохода, но и от достигнутого в предыдущий период уровня потребления.

Примером динамической модели экономики, учитывающей для каждой эндогенной переменной лаговые переменные соот­ветствующего экономического содержания, может служить мо­дель открытой экономики с экономической активностью со стороны государства.

Ct = a0 + a1Yt + a2Ct-1 +e1,

It = b0 + b1Yt + b2Ut-1 + e2,

IMt = k0 + k1Yt + k2IMt-1 + e3,

Yt = Ct + It + Gt – IMt.

В этой модели четыре эндогенные переменные:

Ct — личное потребление в период времени t;

It— частные чистые инвестиции в отрасли экономики в пери­од времени t;

IMt —импорт в период времени t;

Yt — национальный доход за период времени t.

Все переменные приведены в постоянных ценах.

Предопределенными переменными в модели являются следу­ющие три переменные:

Ct-1 — личное потребление за предыдущий период;

Ut-1 — доход личных домохозяйств от предпринимательской деятельности за предыдущий период и доход от имущества плюс нераспределенная прибыль предприятий до налогообложения;

IMt-1 — импорт за предыдущий период времени t-1.

В качестве экзогенной переменной в модели рассматривается переменная Gt— общественное потребление плюс государствен­ные чистые капиталовложения в экономику страны плюс измене­ние запасов минус косвенные налоги плюс, дотации плюс экспорт.