В этой системе три эндогенных переменных
и одна экзогенная переменная .Проверим модель на идентифицируемость:
Необходимое условие:
1-е уравнение:
H=2 (
, ) D=1( )D+1=H => уравнение точно идентифицируемо
2-е уравнение:
H=2 (
, ) D=1( )D+1=H => уравнение точно идентифицируемо
Достаточное условие:
1-е уравнение:
2 | -1 | 0 |
3 | 1 | 1 |
det = -1 ≠ 0
rang = 2
Число эндогенных переменных равно 3
, 3-1=2, т.е. ранг равен числу эндогенных переменных без одного => уравнение точно идентифицируемо.2-е уравнение:
1 | -1 | 0 |
3 | 1 | 1 |
det = -1 ≠ 0
rang = 2
Число эндогенных переменных равно 3
, 3-1=2, т.е. ранг равен числу эндогенных переменных без одного => уравнение точно идентифицируемо.Из необходимого и достаточного условий следует, что система точноидентифицируема, применяется КМНК (косвенный метод наименьших квадратов).
Идентификация модели состоит в нахождении по исходным данным оценок коэффициентов модели c0, с1, i0, i1 для структурной формы модели.
Приведем систему уравнение модели к структурному виду, в которой нет балансовых переменных. Подставим для этого балансовую переменную в остальные уравнения.
Исключим из системы уравнений (1) балансовое уравнение :, ,
. .
,
- структурная форма модели
.
Разрешаем уравнение структурной формы (2) относительно эндогенных переменных и и получаем приведенную форму модели:,
. где
,
,
,
,
,
.
Проведя вычисления с помощью программы Excel, используя МНК (см. таблицы № 2,3 Приложения), получим следующие оценочные коэффициенты. Чтобы упростить процедуру расчетов будем работать с отклонениями от средних уровней, т.е. Сt- Сt, Gt- Gt, It - It. Система нормальных уравнений в общем виде :∑y = na + b1∑x1 + b2∑x2 + … +bp∑xp ,
∑yx1 = a∑ x1 + b1∑ (x1)2 + b2∑x1x2 + … + bp∑xpx1 , (5)
……………………………………………………. ,
∑yxp = a∑xp + b1 ∑x1xp + b2 ∑x2xp + … + bp∑(xp)2.
Из системы нормальных уравнений для каждого из уравнений следует, что:(6)
Подставив найденные оценки
в систему (3), получим:Ĉ = 26209,95+5,77
,Î = -2133,10+ 2,17
.Теперь найдем
на основании системы (4): Подставим полученные коэффициенты в исходную модель (1):2
2.3 Прогнозирование эндогенных переменных.
Для прогноза эндогенных переменных на
шагов вперед (в моем случае на три шага) необходимо задать значения предопределенных переменных Предопределенная переменная в моей работе (в моем случае экзогенная) – (государственные расходы в год ). Поскольку у меня нет данных о будущих государственных расходах, то получим их путем прогноза по линейному тренду: .Для прогноза на 2008, 2009, 2010 года воспользуемся следующим уравнением:
, где n – номер последнего года из Приложения №1Найдем методом наименьших квадратов коэффициенты.
; 2486,29. ; 691,37.Уравнение регрессии примет следующий вид:
где ;Таким образом, получаем:
для прогноза на 2008 год, т.е. при
=1 ,для прогноза на 2009 год, т.е. при
=2,для прогноза на 2010 год, т.е. при
=3.Затем осуществляем прогноз эндогенных показателей:
Находим прогноз будущих значений государственных расходов на 2008 г., 2009 г., 2010 г. (
и и = 41 ).Исходя из уравнения регрессии, находим:
G39 = 29449,71,
G40= 30141,08,
G41= 30832,45.
Подставив эти значения в формулы для выровненных значений эндогенных переменных, получим:
Прогноз на 2008 г.
C39 = 26209,95+5,77G39 = 196126,38
I39 = - 2133,1+2,17 G39 =61745,71
Y39 = 29449,71+196126+61746 =287321,81
Прогноз на 2009 г.
C40 = 26209,95+5,77G40 = 200115,39
I40 = - 2133,1+2,17 G40 =63245,35
Y40 = 29449,71+196126+61746 =293501,82
Прогноз на 2010 г.
C41 = 26209,95+5,77G41 = 204104,40
I41 = - 2133,1+2,17 G41 =64744,99
Y41 = 29449,71+196126+61746 =299681,84
Год | G | C | I | Y |
2008 | 29449,71 | 196126,38 | 61745,71 | 287321,81 |
2009 | 30141,08 | 200115,39 | 63245,35 | 293501,82 |
2010 | 30832,45 | 204104,40 | 64744,99 | 299681,84 |
В ходе работы была проведена идентификация эконометрической модель национальной экономики Турции с помощью косвенного метода наименьших квадратов. На основе полученной модели, которая отражает взаимосвязь макроэкономических показателей (ВВП, непроизводственного потребления, инвестиций и государственных расходов) за 1970-2007гг, был сделан прогноз на 2008 г.,2009 г и 2010 г. Полученные данные позволяют сделать вывод о развитии экономики Турции.