б) Обобщенная задача Дирихле.
В приложениях условие непрерывности граничных значений
На границе
Если заданная функция непрерывна, то обобщенная задача Дирихле совпадет с обычной, ибо условие ограниченности функции u(z) следует из условия ее непрерывности в
Теорема единственности решения обобщенной задачи Дирихле:
В данной области при заданной граничной функции существует не более одного решения обобщенной задачи Дирихле.
Решение обобщенной задачи Дирихле можно свести к решению обычной задачи Дирихле.
Можно доказать, что:
1. для любой односвязной области D и любой кусочно-непрерывной с точками разрыва первого рода граничной функции решение обобщенной задачи Дирихле существует.
2. решение обобщенной задачи Дирихле для единичного круга дается интегралом Пуассона
3. для произвольной области D, мы получим искомую формулу для решения обобщенной задачи Дирихле интегральной формулой Дж.Грина [12, 18]:
где
ds - элемент длины
Формула Грина (3) выражает решение задачи Дирихле для некоторой области D через логарифм конформного отображения D на единичный круг, т.е. сводит решение задачи Дирихле к задаче конформного отображения. И обратное верно.
Итак, задача конформного отображения области на единичный круг и задача Дирихле для той же области эквивалентны, они сводятся друг к другу с помощью простых операций дифференцирования и интегрирования.
в) Видоизмененная задача Дирихле.
Пусть S+ - связная область, ограниченная простыми замкнутыми непересекающимися гладкими контурами
Функция
где Aи
г) Классическая задача Дирихле для многосвязных областей [24].
Найти (действительную) функцию u(x,y), гармоническую в
u=f(t) на L, (5)
где f(t) – заданная на L (действительная) непрерывная функция; в случае бесконечной области от функции u(x,y) требуется еще, чтобы она оставалась ограниченной на бесконечности, т.е. и стремится к вполне определенному пределу, когда z уходит в бесконечность.
Напомним, что всякая функция u(z) гармоническая вне круга
абсолютно и равномерно сходящийся вне круга любого радиуса
Для некоторых применений не меньший интерес представляет и следующая задача, которая называется "видоизмененной задачей Дирихле". Термин этот введен в статье Н.И.Мусхелишвили и Д.З.Авазошвили [17].
Видоизмененная задача Дирихле – задача Дирихле
для многосвязных областей.
Найти функцию u(x,y), гармоническую в S+, непрерывную в
1. u(x,y)= Ф(z) является действительной частью функции Ф(z), голоморфной в S+;
2. она удовлетворяет граничному условию
u=f(t)+ (t) на L, (6)
где f(t) – заданная на
где
Можно показать, что постоянные