Смекни!
smekni.com

Об интегральных формулах Вилля-Шварца для трехсвязных областей и ее применение к краевым задачам (стр. 1 из 11)


на тему:

"Об интегральных формулах Вилля-Шварца

для трехсвязных областей и ее применение

к краевым задачам Дирихле".

Оглавление.

Введение.

§1. О задачах Дирихле.

а) Задача Дирихле для круга – Задача Пуассона (классическая формулировка).

б) Обобщенная задача Дирихле

в) Видоизмененная задача Дирихле.

г) Классическая задача Дирихле для многосвязных областей.

д) Общая формулировка задачи Дирихле.

е) Задача Неймана.

§2. О задачах Шварца-Пуассона.

а) Интеграл Шварца для круга.

б) Интегральная формула Пуассона.

в) Интеграл Пуассона для внешности круга.

г) Задача Дирихле-Пуассона для полуплоскости.

д) Задача Дирихле для кругового кольца.

§3. Интегральная формула Анри Вилля – проблема Дирихле для кругового кольца (1912).

а) Преобразование интегральной формулы А.Вилля.

б) Функции Вейерштрасса (I(u),

(u),
(u)).

§4. О некоторых изменениях теории конформного отображения к краевым задачам.

а) Об структурном классе интегральных представлений.

б) О решении задачи Дирихле методом Чизотти для многосвязных областей.

в) Интегральная формула Чизотти для заданных областей – решение задачи Дирихле для соответствующих областей.

§5. Об интегральных представлениях Пуассона-Дирихле для заданных областей.

§6. Интегральная формула Чизотти-Пуассона-Дирихле для конечных трехсвязных областей.

Литература.

Введение.

В данной дипломной работе исследованы некоторые интегральные формулы (классические представления) аналитических и гармонических функций в заданных многосвязных областях.

Даны новые методы решения классических краевых задач методом интегральных представлений аналитических функций, используя метод конформного отображения канонической области

(z) на соответствующие области G
(w).

Используя фундаментальные интегральные формулы для круга и кругового кольца, автор обобщает задачи Пуассона, Дирихле, Дини, Шварца, Кристофеля-Шварца и Чизотти для многосвязных областей.

В частности, найдены интегральные формулы для эксцентрического кругового кольца, двух-трехсвязных областей. И нашли применение их к решению классических краевых задач типа Дирихле-Неймана.

Целью нашего исследования в предлагаемой работе являются:

1. Разобраться в вышеуказанных (непростых) известных классических задачах типа Шварца, Дирихле, Пуассона и Чизотти [1] – [7].

2. Творчески изучая и классифицируя их, найти обобщение и решение этих задач для конкретных многосвязных областей (см. оглавление).

Данная работа состоит из введения и 6 параграфов.

В введении обосновывается постановка задачи, показывается актуальность рассматриваемой темы дипломной работы, дается краткий анализ и перечень работ по данному исследованию (1 – 24).

Параграфы (§1, §2) не только вспомогательные материалы, необходимые для понимания основного содержания дипломной темы, но и являются справочной классификацией о задачах Дирихле (классическая, обобщенная, общая, видоизмененная) для любой связности заданной области G

= G
(w) и задачах Шварца-Пуассона (для круга, кругового кольца, внешности кругов, для полуплоскости).

В §3 интегральная формула Анри Вилля – проблема Дирихле для кругового кольца в форме Ахиезера преобразована и получена новая компактная, контурная, структурная формула А.Вилля для кругового кольца. Здесь же, ввиду важности трех функций I(u),

(u) и
(u) для практического приложения и простоты реализации на ЭВМ, мы рассмотрели все варианты представления рядов данных функций (37) – (48) по справочникам [19] – [22] специальных функций (а), б)).

Параграфы §4 - §6 – основное содержание самостоятельной работы автора: рассмотрены применение теории комфорного отображения к краевым задачам – решение задачи Дирихле методом Чизотти для заданных областей (§4).

В §5 – интегральные представления Пуассона-Дирихле для круга, кругового кольца и, наконец, §6 – интегральная формула Чизотти-Шварца-Пуассона-Дирихле для конечных трехсвязных областей.

Оглавление – ясное представление о единстве всех классических задач и о содержании предлагаемой работы (см. оглавление!).

В данной работе все найденные решения выписываются почти в явном виде и параметры, фигурирующие в постановке задачи, определяются явно и однозначно.

Основное содержание дипломной работы являются некоторыми обобщениями курсовых работ и самостоятельной работы автора.

§1. О задачах Дирихле.

а) Задача Дирихле для круга – Задача Пуассона

(классическая формулировка).

1. Задача нахождения функции, гармонической в некоторой области была названа Риманом задачей Дирихле. В классическом виде эта задача формулируется следующим образом.

Пусть на границе

области D+ задана непрерывная функция f(
). Найти непрерывную в
и гармоническую внутри области D+ функцию U(z), принимающую на границе значения f(
). Таким образом, требуется, чтобы U(z) стремилась к f(
), когда z
D+ стремится к
, u(z) → f(
), при z
.

Задача Дирихле представляет интерес для физики. Так, потенциал установившегося движения несжимаемой жидкости, температура, электромагнитные и магнитные потенциалы – все являются гармоничными функциями.

Примером физической задачи, приводящей к задаче Дирихле, служит определение температуры внутри пластинки при известных ее значениях на контуре.

Из других физических задач возникла формулировка задачи Неймана. Найти гармоническую в области D+ функцию U(z) по заданным значениям ее нормальной производной

на
, а также смешанной задачи Дирихле-Неймана.

Найти гармоническую в D+ функцию по известным ее значениям на некоторых дугах границы

и значениям нормальной производной на остальной части
.

Смешанная задача встречается главным образом в гидродинамике. Различные приложения этих задач можно найти, например, в книге Лаврентьев И.А. и Шабат Б.В. [1].

Итак, по многочисленности и разнообразию приложений задача Дирихле занимает исключительное место в математике. К ней непосредственно сводится основная задача в гидродинамике – задача обтекания, задачи кручения и изгиба в теории упругости. С нею же тесно связаны основные задачи статистической теории упругости. Мы будем заниматься плоской задачей, которая представляет для нас особый интерес как по обилию приложений, так и по большей разработанности и эффективности методов решения.

2. Совокупность гармонических функций – это совокупность всех решений уравнения Лапласа

, (1)

которое является одним из простейших дифференциальных уравнений с частными производными второго порядка.

Подобно тому, как в случае обыкновенных дифференциальных уравнений для выделения одного определенного решения задают дополнительные условия, так и для полного определения решения уравнения Лапласа требуются дополнительные условия. Для уравнения Лапласа они формулируются в виде так называемых краевых условий, т.е. заданных соотношений, которым должно удовлетворять искомое решение на границе области.

Простейшее из таких условий сводится к заданию значений искомой гармонической функции в каждой точке границы области. Таким образом, мы приходим к первой краевой задаче или задаче Дирихле:

Найти гармоническую в области D и непрерывную в

функцию u(z), которая на границе Dпринимает заданные непрерывные значения u(
).

К задаче Дирихле приводится еще, кроме вышеперечисленных, отыскание температуры теплового поля или потенциала электростатического поля в некоторой области при заданной температуре или потенциале на границе области. К ней сводятся и краевые задачи других типов.