Смекни!
smekni.com

Задача на собственные значения для вырождающегося уравнения смешанного типа (стр. 2 из 2)

Найденные значения

,
подставим в равенство (16) и решим его относительно g. Потребуем, чтобы
,
. Тогда получим:

(27)

Поскольку

, то уравнение (27) имеет место, если

Рассмотрим по отдельности случаи

и

При

уравнение (27) имеет решения
или
, где
. С учетом того, что
и
, решением (27) будет

При

, решением (27) является
или
, где
. С учетом тех же условий получим:

По формулам (25) и (26) находим

и
при найденных
:

где

Из теории бесселевых функций известно [10], что при

функция
имеет только вещественные нули. Тогда, обозначая через
--m-ый корень уравнения (11), находим собственные значения задачи Tl:

Таким образом, построена система собственных функций задачи Tl:

Список литературы

Смирнов М.М. Уравнения смешанного типа. М., 1985.

Пономарев С.М. Спектральная теория основной краевой задачи для уравнения смешанного типа Лавретьева-Бицадзе. Автореферат диссертации … д-ра ф.-м. наук. М.: МГУ, 1981.

Моисеев Е.И. Уравнение смешанного типа со спектральным параметром. М.: МГУ, 1998.

Сабитов К.Б., Тихомиров В.В. О построении собственных значений и функций одной газодинамической задачи Франкеля // Математическое моделирование. 1990. Т. 2. № 10. С. 100-109.

Моисеев Е.И. о решении вырождающихся уравнений с помощью биортогональных рядов // Дифференц. уравнения. 1991. Т. 27. № 1. С. 94-103.

Мамедов Я.Н. О некоторых задачах на собственные значения для уравнения смешанного типа // Дифференц. уравнения. 1990. Т. 26. № 1. С. 163-168.

Сабитов К.Б., Вагапов В.З. О построении частных решений вырождающихся уравнений смешанного типа // Комплексный анализ, дифференц. уравнения и смежные вопросы: Тр. Международ. науч. конф. Уфа, 1996. С. 99-106

Вагапов В.З. построение частных решений одного уравнения смешанного типа // Тр. Всеросс. науч. конф. «Физика конденсированного состояния». Стерлитамак, 1997. Т. 1. С. 26-30.

Бейтмен Г., Эрдейи А. Высшие трансцендентные функции. М.: Наука, 1973.

Ватсон Г.Н. Теория бесселевых функций. 1. М., 1949.