Задачи
1. Ребро куба равно а.
Найдите:
Диагональ грани: d= a√2.
Диагональ куба: D= a√3.
Периметр основания: P= 4a.
2. Основанием прямой призмы является равнобедренный треугольник, в котором высота проведенная к основанию равняется 8см. Высота призмы равняется 12см. Найдите полною поверхность призмы если боковая грань что содержит основание треугольника - квадрат.
Решение
Площадь поверхности призмы будет равна сумме площадей оснований и сумме площадей боковых поверхностей, то есть
, где - площадь основания призмы, - площадь боковой поверхности, содержащей основание, - площадь боковой поверхности, содержащей стороны равнобедренного треугольника. (Они равны, так как стороны основания равны в следствие того, что треугольник равнобедренный, а вторые стороны равны высоте призмы)Поскольку боковая грань, содержащая основание треугольника, является квадратом, то основание треугольника также равно 12 см. (основание треугольника одновременно является стороной грани).
Таким образом, зная высоту и основание равнобедренного треугольника можно найти его остальные стороны и площадь:
Катеты, соответственно равны (у нас высота, являющаяся в равнобедренном треугольнике одновременно и медианой
, с каждым из катетов образует прямоугольный треугольник) по теореме Пифагора:Таким образом:
,3. В правильной четырёхугольной призме площадь основания 144
, а высота 14 см. Найти диагональ призмы.Решение
Правильный четырехугольник – это квадрат.
Соответственно, сторона основания будет равна
Откуда диагональ основания правильной прямоугольной призмы будет равна
Диагональ правильной призмы образует с диагональю основания и высотой призмы прямоугольный треугольник. Соответственно, по теореме Пифагора диагональ заданной правильной четырехугольной призмы будет равна:
Ответ: 22 см
4. Рассмотрим правильную четырехугольную призму
, диагональное сечение которой – квадрат. Через вершину и середины ребер АВ и ВС проведена плоскость. Найти площадь полученного сечения, еслиРешение
Построение сечения видно на рисунке, где К и L – середины сторон АВ и ВС основания призмы, Е и F – точки пересечения прямой КL соответственно с продолжениями сторон DA и DC. Сечением является пятиугольник
площадь которого можно найти. Можносначала вычислить площади треугольников и а потом от площади первого треугольника вычесть удвоенную площадь второго (поскольку треугольники и равны). Однако в данном случае проще воспользоваться формулой:Проекция пятиугольника
на плоскость основания призмы есть пятиугольник , площадь которого найдем, вычитая из площади квадрата площадь треугольника ВКL:Пусть диагональ ВD основания пересекает отрезок КL в точке О. Так как
и (согласно теореме о трех перпендикулярах), то – линейный угол двугранного угла КL.Далее находим:
Из прямоугольного треугольника
по теореме Пифагора имеем:Значит,
и5. Дана правильная призма:
, . Найти высоту призмы.Решение
Площадь основания
АВ= 2 см.
Периметр основания Р = 8 см.
Высота призмы
6. Основанием параллелепипеда служит квадрат. Одна из вершин верхнего основания равноудалена от всех вершин нижнего основания и находится на расстоянии b от этого основания. Сторона основания равна a . Найдите полную поверхность параллелепипеда.
Решение
Пусть
– данный параллелепипед с основаниями , и боковыми рёбрами , причём ABCD – квадрат со стороной a , вершина равноудалена от вершин A, B, C и D, а расстояние от вершины до плоскости основания ABCD равно b. Поскольку точка равноудалена от вершин квадрата ABCD, она лежит на перпендикуляре к плоскости ABCD, проходящем через центр O квадрата. Перпендикуляр, опущенный из точки O на сторону BC, проходит через её середину M. По теореме о трёх перпендикулярах , поэтому – высота грани . Из прямоугольного треугольника находим, что .Значит,
Аналогично,