Смекни!
smekni.com

Кратные интегралы (стр. 2 из 3)

Тогда

Следовательно,

Моменты инерции фигуры D относительно осей Ох и Оу:

(15)

5) Масса плоской фигуры D переменной поверхностной плотности γ = γ (х, у):

(16)

Пример 3.

Найти массу пластинки D плотности γ = ух3, если

Решение.

Координаты центра масс плоской фигуры переменной поверхностной плотности γ = γ (х, у):

(17)

Пример 4.

Найти центр тяжести однородной пластины D, ограниченной кривыми у2 = ах и

Решение.

Так как пластина однородна, т.е. ее плотность постоянна, то можно принять ее за единицу.

Тогда

Найдем массу пластины, а для этого определим абсциссу точки пересечения ограничивающих ее линий:

Соответственно

6) Объем тела V:

(18)

Пример 5.

Найти объем тела V, ограниченного поверхностями

Решение.

Найдем проекцию тела на плоскость Оху (при этом заметим, что плоскость

проектируется на эту плоскость в виде прямой х = 0):

Определим абсциссу точки пересечения кривых у = х2 и х + у = 2:

посторонний корень. Тогда, используя формулу (18), получаем:

7) Масса тела V плотности γ = γ (x, y, z):

(19)

8) Моменты инерции тела V относительно координатных осей и начала координат:

(20)

(21)

где γ (х, y, z) – плотность вещества.

Статические моменты тела относительно координатных плоскостей Oyz, Oxz, Oxy:

(22)

9) Координаты центра масс тела:


II. Криволинейные и поверхностные интегралы

2.1Криволинейные интегралы

Рассмотрим на плоскости или в пространстве кривую L и функцию f, определенную в каждой точке этой кривой. Разобьем кривую на части Δsiдлиной Δsiи выберем на каждой из частей точку Mi. Назовем d длину наибольшего отрезка кривой:

.

Криволинейным интегралом первого рода от функции f по кривой L называется предел интегральной суммы

, не зависящий ни от способа разбиения кривой на отрезки, ни от выбора точек Mi:

(24)

Если кривую L можно задать параметрически:

x = φ(t), y = ψ(t), z = χ(t), t0 ≤ t ≤ T,

то способ вычисления криволинейного интеграла первого рода задается формулой

(25)

В частности, если кривая L задана на плоскости явным образом:

у=φ(х), где х1 ≤ х ≤ х2, формула (40) преобразуется к виду:

. (26)

Теперь умножим значение функции в точке Mi не на длину i-го отрезка, а на проекцию этого отрезка, скажем, на ось Ох, то есть на разность xi – xi-1 = Δxi.

Если существует конечный предел при

интегральной суммы
, не зависящий от способа разбиения кривой на отрезки и выбора точек Mi, то он называется криволинейным интегралом второго рода от функции f(M) по кривой L и обозначается

. (27)

Подобным образом можно определить и криволинейные интегралы 2-го рода вида

Если вдоль кривой L определены функции P(M)=P(x, y, z), Q(M) = Q(x, y, z), R(M) = R(x, y, z), которые можно считать компонентами некоторого вектора

, и существуют интегралы

,

тогда их сумму называют криволинейным интегралом второго рода (общего вида) и полагают

.

Если кривая L задана параметрическими уравнениями

x = φ(t), y = ψ(t), z = χ(t), α ≤ t ≤ β ,

где φ, ψ, χ – непрерывно дифференцируемые функции, то

. (28)

Связь между двойным интегралом и криволинейным интегралом 2-го рода задается формулой Грина:

(29)

где L – замкнутый контур, а D – область, ограниченная этим контуром.

Необходимыми и достаточными условиями независимости криволинейного интеграла

от пути интегрирования являются:

. (30)

При выполнении условий (30) выражение Pdx + Qdy +Rdzявляется полным дифференциалом некоторой функции и. Это позволяет свести вычисление криволинейного интеграла к определению разности значений и в конечной и начальной точках контура интегрирования, так как

При этом функцию и можно найти по формуле

(31)

где (x0, y0, z0) – точка из области D, aC – произвольная постоянная.

2.2Поверхностные интегралы

Рассмотрим некоторую поверхность S, ограниченную контуром L, и разобьем ее на части S1, S2,…, Sп (при этом площадь каждой части тоже обозначим Sп). Пусть в каждой точке этой поверхности задано значение функции f(x, y, z). Выберем в каждой части Siточку

Mi (xi, yi, zi) и составим интегральную сумму

Если существует конечный предел при

этой интегральной суммы, не зависящий от способа разбиения поверхности на части и выбора точек Mi, то он называется поверхностным интегралом первого рода от функции f(M) = f(x, y, z) по поверхности S и обозначается

. (32)

Если поверхность S задается явным образом, то есть уравнением вида z = φ(x, y), вычисление поверхностного интеграла 1-го рода сводится к вычислению двойного интеграла:

(33)

где Ω – проекция поверхности S на плоскость Оху.

Разобьем поверхность Sна части S1, S2,…, Sп, выберем в каждой части Si точку Mi(xi, yi, zi), и умножим f(Mi) на площадь Diпроекции части Siна плоскость Оху. Если существует конечный предел суммы

,

не зависящий от способа разбиения поверхности и выбора точек на ней, то он называется поверхностным интегралом второго рода от функции f(M) по выбранной стороне поверхности S и обозначается

(34)