Смекни!
smekni.com

Кратные интегралы (стр. 1 из 3)

Министерство образования и науки Российской Федерации

Курсовая работа

По дисциплине: Высшая математика

(Основы линейного программирования)

На тему: КРАТНЫЕ ИНТЕГРАЛЫ

Выполнил: ______________

Преподаватель:___________

Дата ___________________

Оценка _________________

Подпись ________________

ВОРОНЕЖ 2008


Содержание

1 Кратные интегралы

1.1 Двойной интеграл

1.2 Тройной интеграл

1.3 Кратные интегралы в криволинейных координатах

1.4 Геометрические и физические приложения кратных интегралов

2 Криволинейные и поверхностные интегралы

2.1 Криволинейные интегралы

2.2 Поверхностные интегралы

2.3 Геометрические и физические приложения

Список используемой литературы


1 Кратные интегралы

1.1 Двойной интеграл

Рассмотрим в плоскости Оху замкнутую область D, ограниченную линией L. Разобьем эту область какими-нибудь линиями на п частей

, а соответствующие наибольшие расстояния между точками в каждой из этих частей обозначим d1, d2, ..., dn. Выберем в каждой части
точку Рi.

Пусть в области D задана функция z = f(x, y). Обозначим через f(P1), f(P2),…, f(Pn) значения этой функции в выбранных точках и составим сумму произведений вида f(Pi)ΔSi:

, (1)

называемую интегральной суммой для функции f(x, y) в области D.

Если существует один и тот же предел интегральных сумм (1) при

и
, не зависящий ни от способа разбиения области D на части, ни от выбора точек Pi в них, то он называется двойным интегралом от функции f(x, y) по области D и обозначается

. (2)

Вычисление двойного интеграла по области D, ограниченной линиями

x = a, x = b( a < b ), где φ1(х) и φ2(х) непрерывны на [a, b] (рис. 1) сводится к последовательному вычислению двух определенных интегралов, или так называемого двукратного интеграла:

Рис. 1

=
(3)

1.2 Тройной интеграл

Понятие тройного интеграла вводится по аналогии с двойным интегралом.

Пусть в пространстве задана некоторая область V, ограниченная замкнутой поверхностью S. Зададим в этой замкнутой области непрерывную функцию f(x, y, z). Затем разобьем область V на произвольные части Δvi, считая объем каждой части равным Δvi , и составим интегральную сумму вида

, (4)

Предел при

интегральных сумм (11), не зависящий от способа разбиения области V и выбора точек Pi в каждой подобласти этой области, называется тройным интегралом от функции f(x, y, z) по области V:

. (5)

Тройной интеграл от функции f(x,y,z) по области V равен трехкратному интегралу по той же области:

. (6)

1.3 Кратные интегралы в криволинейных координатах

Введем на плоскости криволинейные координаты, называемые полярными. Выберем точку О (полюс) и выходящий из нее луч (полярную ось).

Рис. 2 Рис. 3

Координатами точки М (рис. 2) будут длина отрезка МО – полярный радиус ρ и угол φ между МО и полярной осью: М(ρ,φ). Отметим, что для всех точек плоскости, кроме полюса, ρ > 0, а полярный угол φ будем считать положительным при измерении его в направлении против часовой стрелки и отрицательным – при измерении в противоположном направлении.

Связь между полярными и декартовыми координатами точки М можно задать, если совместить начало декартовой системы координат с полюсом, а положительную полуось Ох – с полярной осью (рис. 3). Тогда x=ρcosφ, у=ρsinφ . Отсюда

, tg
.

Зададим в области D, ограниченной кривыми ρ=Φ1 (φ) и ρ=Φ2 (φ), где φ1 < φ < φ2 , непрерывную функцию z = f(φ, ρ) (рис. 4).

Рис. 4

Тогда

(7)

В трехмерном пространстве вводятся цилиндрические и сферические координаты.

Цилиндрические координаты точки Р(ρ,φ,z) – это полярные координаты ρ, φ проекции этой точки на плоскость Оху и аппликата данной точки z (рис.5).

Рис.5 Рис.6

Формулы перехода от цилиндрических координат к декартовым можно задать следующим образом:

x = ρcosφ, y = ρsinφ, z = z. (8)

В сферических координатах положение точки в пространстве определяется линейной координатой r – расстоянием от точки до начала декартовой системы координат (или полюса сферической системы), φ – полярным углом между положительной полуосью Ох и проекцией точки на плоскость Оху, и θ – углом между положительной полуосью оси Оz и отрезком OP (рис.6). При этом

Зададим формулы перехода от сферических координат к декартовым:

x = rsinθcosφ, y = rsinθsinφ, z = rcosθ. (9)

Тогда формулы перехода к цилиндрическим или сферическим координатам в тройном интеграле будут выглядеть так:

, (10)

где F1 и F2 – функции, полученные при подстановке в функцию fвместо x, y, z их выражений через цилиндрические (8) или сферические (9) координаты.

1.4 Геометрические и физические приложения кратных интегралов

1) Площадь плоской области S:

(11)

Пример 1.

Найти площадь фигуры D, ограниченной линиями

у = 2, у = 5.

Решение.

Эту площадь удобно вычислять, считая у внешней переменной. Тогда границы области задаются уравнениями

и

где

вычисляется с помощью интегрирования по частям:

Следовательно,

2) Объем цилиндроида, то есть тела, ограниченного частью поверхности S:z = f(x,y) , ограниченной контуром L, проекцией D этой поверхности на плоскость Оху и отрезками, параллельными оси Оz и соединяющими каждую точку контура L с соответствующей точкой плоскости Оху:

(12)

3) Площадь части криволинейной поверхности S, заданной уравнением z = f(x,y), ограниченной контуром L:

(13)

где D – проекция S на плоскость Оху.

4) Момент инерции относительно начала координат О материальной плоской фигуры D:

(14)

Пример 2.

Найти момент инерции однородной круглой пластинки

(x – a)2 + (y – b)2 < 4b2 относительно начала координат.

Решение.

В силу однородности пластинки положим ее плотность γ(х,у) = 1.

Центр круга расположен в точке C(a, b), а его радиус равен 2b.

Уравнения границ пластинки имеют вид

Вычислим каждый из полученных интегралов отдельно.

Для вычисления интеграла I1 сделаем замену:

при x = a – 2b
при x = a + 2b

Для вычисления интеграла I2 преобразуем подынтегральную функцию по формуле разности кубов: