Затем умножаем элементы первой строки на (-2) и прибавляем к соответствующим элементам третьей строки.
Умножаем элементы третьей строки на (-2) и прибавляем к соответствующим элементам второй строки.
Первую и вторую строки оставляем без изменения. Умножаем элементы второй строки на 3 и прибавляем к соответствующим элементам третьей строки. Получим:
Вычисляем значения переменных СЛАУ снизу вверх:
Итак, решение системы уравнений имеет вид:
, ,или в краткой форме: (1,2,1).
14. Задача 14
Определить число элементарных событий и простых соединений
Сколько есть двузначных чисел, у которых обе цифры четные?
Решение
Всего четных цифр 4 (2,4,6,8), значит существует 4 способа выбора первой цифры двузначного числа и 4 способа выбора второй цифры. Так как выбор цифр осуществляется одновременно, по правилу произведения вычислим количество двузначных чисел, у которых обе цифры четные:
15. Задача 15
Вычислить вероятность события по классической схеме
Имеется 6 билетов в театр, 4 из которых на места первого ряда. Какова вероятность того, что из 3 наудачу выбранных билета 2 окажутся на места первого ряда?
Решение
1. Определяем общее количество способов, которыми можно взять 3 билета из 6.
2. Определяем количество способов взять три билета, в том числе два на места первого ряда и один на другой ряд:
3. Вероятность искомого события:
16. Задача 16
Вычислить вероятность события с использованием теорем сложения и умножения.
Охотник выстрелил три раза по удаляющейся мишени. Вероятность попадания в нее в начале стрельбы равна 0,8, а после каждого выстрела уменьшается на 0,1. Найти вероятность того, что он попал в цель все три раза.
Решение
Пусть
P(A) – вероятность попадания 3 раза,
P(B) – вероятность попадания в 1-й раз,
P(C) – вероятность попадания во 2-й раз,
P(D) – вероятность попадания в 3-й раз.
Тогда
P(B)=0,8
P(C)= P(B)-0,1=0,8-0,1=0,7
P(D)= P(C)-0,1=0,7-0,1=0,6
P(A)=P(B) ∙P(C) ∙P(D)=0,8∙0,7∙0,6=0,336
17. Задача 17
Вычисление вероятности повторных независимых испытаний
Определить вероятность того, что в семье, имеющей 5 детей, будет не более трех девочек. Вероятность рождения мальчиков и девочек считаем одинаковой.
Решение
Используем формулу Я. Бернулли:
1. Определяем исходные данные для формулы Бернулли:
n=5, k=3, p=0,5, q=1-0,5=0,5
2. Вычисление вероятности искомого события:
18. Задача 18
Найти законы распределения случайных величин
и , если законы распределения случайных величин и имеют вид0 | 2 | 4 | 6 | |
0,1 | 0,2 | 0,3 | 0,4 |
3 | 5 | 7 | 9 | |
0,3 | 0,2 | 0,2 | 0,3 |
Решение
Вычисления производим в табличной форме на основании определения разности и произведения случайных величин.
1. Вычисляем промежуточные величины для вычисления распределения переменной величины Z=Х-Y (разности двух случайных величин), используя табл.2.
Таблица 2.
3 | 5 | 7 | 9 | ||
0.3 | 0.2 | 0.2 | 0.3 | ||
0 | 0.1 | -30.03 | -5 0.02 | -70.02 | -9 0.03 |
2 | 0.2 | -1 0.06 | -3 0.04 | -5 0.04 | -7 0.06 |
4 | 0.3 | 1 0.09 | -1 0.06 | -3 0.06 | -5 0.09 |
6 | 0.4 | 3 0.12 | 1 0.08 | -1 0.08 | -3 0.12 |
2. Записываем закон распределения случайной величины Z=X-Y в табл.3.
Таблица 3
-9 | -7 | -5 | -3 | -1 | 1 | 3 | |
0.03 | 0.08 | 0.15 | 0.25 | 0.2 | 0.17 | 0.12 |
2. Проверяем достоверность вычислений:
0.03+0.08+0.15+0.25+0.2+0.17+0.12=1.04. Вычисляем промежуточные величины для вычисления распределения случайной величины
(произведения тех же случайных величин), используя табл.4.Таблица 4
3 | 5 | 7 | 9 | ||
0.3 | 0.2 | 0.2 | 0.3 | ||
0 | 0.1 | 0 0.03 | 00.02 | 00.02 | 00.03 |
2 | 0.2 | 60.06 | 10 0.04 | 14 0.04 | 18 0.06 |
4 | 0.3 | 12 0.09 | 20 0.06 | 28 0.06 | 36 0.09 |
6 | 0.4 | 18 0.12 | 90 0.08 | 42 0.08 | 54 0.12 |
5. Записываем закон распределения случайной величины
в табл. 5.Таблица 5
0 | 6 | 10 | 12 | 14 | 18 | 20 | 28 | 36 | 42 | 54 | 90 | |
0.1 | 0.06 | 0.04 | 0.09 | 0.04 | 0.18 | 0.06 | 0.06 | 0.09 | 0.08 | 0.12 | 0.08 |
6. Проверяем достоверность вычислений:
0=1.0+0.06+0.04+0.09+0.04+0.18+0.06+0.06+0.09+0.08+0.12+0.08=1.019. Задача 19
Вычислить основные характеристики вариационного ряда
Таблица 6
25 | 29 | 33 | 37 | 41 | Итого | |
16 | 8 | 19 | 10 | 7 | 60 |
Решение
1. Вычисления производим в табличной форме (табл.7).
Таблица 7
№№ | |||||
1 | 25 | 16 | 625 | 400 | 10000 |
2 | 29 | 8 | 841 | 232 | 6728 |
3 | 33 | 19 | 1089 | 627 | 20691 |
4 | 37 | 10 | 1369 | 370 | 13690 |
5 | 41 | 7 | 1681 | 287 | 11767 |
Итого | 60 | 6505 | 1916 | 62876 | |
Среднее | - | - | 93,42 | 31,93 | 1047,93 |
2. По итоговым данным табл.7, получаем:
- среднюю производительность труда