3. Вычисляем характеристики вариации:
- дисперсию
- среднее квадратическое отклонение
- коэффициент вариации
4. Результаты вычислений иллюстрирует график рис.3.
Рис. 3. Результаты вычислений20. Задача 20
Найти линейное уравнение регрессии с построением эмпирической и теоретической линий регрессии и оценить тесноту связи для следующих статистических данных
Таблица 8
103 | 108 | 102 | 111 | 95 | 109 | 118 | 123 | |
106 | 103 | 108 | 102 | 111 | 91 | 109 | 118 |
Решение
1. Решение производим в форме табл. 9 на основании системы нормальными уравнениями метода наименьших квадратов для линейной двухпараметрической регрессии:
.Таблица 9
№№ | |||||
1 | 103 | 106 | 10609 | 11236 | 10918 |
2 | 108 | 103 | 11664 | 10609 | 11124 |
3 | 102 | 108 | 10404 | 11664 | 11016 |
4 | 111 | 102 | 12321 | 10404 | 11322 |
5 | 95 | 111 | 9025 | 12321 | 10545 |
6 | 109 | 91 | 11881 | 8281 | 9919 |
7 | 118 | 109 | 13924 | 11881 | 12862 |
8 | 123 | 118 | 15129 | 13924 | 14514 |
Итого | 869 | 848 | 94957 | 90320 | 92220 |
Среднее | 108,63 | 106 | 11870 | 11290 | 11528 |
2. Подставляя итоговые числа сумм в уравнения метода наименьших квадратов, получаем алгебраическую систему двух уравнений с двумя неизвестными вида:
Отсюда получаем:
,а из первого уравнения
3. Записываем корреляционное уравнение
4. Вычисляем коэффициент корреляции уравнения, используя итоговые данные табл.9
Линейный коэффициент корреляционного показывает, что зависимость между параметрами
и слабая.5. Графически результаты вычислений показаны на рис.4 в виде точек исходной статистической совокупности, соединенных серой линией и графика регрессионной зависимости
(сплошная черная линия).Рис. 4. Результаты вычислений