Смекни!
smekni.com

Математические вычисления (стр. 1 из 4)

ОБРАЗОВАТЕЛЬНЫЙ КОНСОРЦИУМ

СРЕДНЕРУССКИЙ УНИВЕРСИТЕТ

НОУ ВПО ТУЛЬСКИЙ ИНСТИТУТ УПРАВЛЕНИЯ И БИЗНЕСА

Контрольная работа

по курсу «Математика»

Выполнил студент В.В.Тюрин

Тула 2010


1. Задача 1

Для заданных двух множеств найти произведения

и
, изобразить их графически и найти пересечение

,

Решение

1.Определяем мощность декартового произведения:

2.Записываем декартовы произведения в виде явного перечисления:

3.Определяем пересечение множеств:

{Ø}

4.Изображаем элементы декартовых произведений АхВ и ВхА в виде точек декартовой плоскости (рис.1). Произведениями множеств являются

совокупности точек, обозначенные разными символами.

Рис. 1. Прямое AxB и обратного BxA произведения двух точечных множеств


Очевидно, что их пересечение пусто, что и соответствует аналитическому решению.

2. Задача 2

Вычислить предел функции с использованием основных теорем

Решение

3. Задача 3

Раскрытие неопределенности вида

и
с использованием правила Лопиталя

Решение

Неопределенность


4. Задача 4

Найти производную простой функции

Решение

Итак,

5. Задача 5

Найти наибольшее и наименьшее значение функции на интервале

Решение

1. Находим первую производную заданной функции

2. Определяем критические точки первого рода:

или
,

Отсюда

,

3. Подвергаем эти точки дополнительному исследованию в табличной форме (таблица 1), учитывая, что заданная функция определена на участке

числовой оси:

Таблица 1

-1,2 (
)
0 (
)
1 (
)
2,5
Знак
-
+
-
Величина
32,88
-6
-1
244
Экстремум m M

Итак,

В данном случае один из глобальных экстремумов совпадает с одним из локальных экстремумов.

6. Задача 6

Вычислить неопределенный интеграл методом подстановки

Решение

Выполним подстановку:

Продифференцируем обе части уравнения:

=

7. Задача 7

Вычислить неопределенный интеграл от рациональной дроби

Решение

1. Найдем производную знаменателя:

2. Выделим в числителе выражение

, для этого умножим знаменатель на 2 и умножим дробь на
, чтобы значение дроби не изменилось, и вынесем
за знак интеграла.

3. Запишем число

, как
, получим:

4. Разлагаем подынтегральное выражение на сумму элементарных дробей:


5. Вычислим интеграл

, для этого выражение
внесем под знак дифференциала. Интеграл принимает табличный вид:

6. Вычислим интеграл

, для этого выделим в знаменателе полный квадрат.

Интеграл принимает табличный вид:

7. Записываем решение:

8. Задача 8

Вычислить определенный интеграл методом интегрирования по частям


Решение

9. Задача 9

По заданным координатам вершинам А, В, С треугольника определить его длины сторон, углы и площадь

А(-5; -5; 3);В(-4; 1; 1);С(1; 4; 0)

Решение

1. Записываем стороны треугольника в форме линейных разложений векторов и строим векторную схему треугольника (рис.1):

Рис. 2 Схема треугольника


2 Вычисляем длины сторон:

3. Определяем углы треугольника,