ОБРАЗОВАТЕЛЬНЫЙ КОНСОРЦИУМ
СРЕДНЕРУССКИЙ УНИВЕРСИТЕТ
НОУ ВПО ТУЛЬСКИЙ ИНСТИТУТ УПРАВЛЕНИЯ И БИЗНЕСА
Контрольная работа
по курсу «Математика»
Выполнил студент В.В.Тюрин
Тула 2010
1. Задача 1
Для заданных двух множеств найти произведения
и , изобразить их графически и найти пересечение ,Решение
1.Определяем мощность декартового произведения:
2.Записываем декартовы произведения в виде явного перечисления:
3.Определяем пересечение множеств:
{Ø}4.Изображаем элементы декартовых произведений АхВ и ВхА в виде точек декартовой плоскости (рис.1). Произведениями множеств являются
совокупности точек, обозначенные разными символами.
Рис. 1. Прямое AxB и обратного BxA произведения двух точечных множеств
Очевидно, что их пересечение пусто, что и соответствует аналитическому решению.
2. Задача 2
Вычислить предел функции с использованием основных теорем
Решение
3. Задача 3
Раскрытие неопределенности вида
и с использованием правила ЛопиталяРешение
Неопределенность
4. Задача 4
Найти производную простой функции
Решение
Итак,
5. Задача 5
Найти наибольшее и наименьшее значение функции на интервале
Решение
1. Находим первую производную заданной функции
2. Определяем критические точки первого рода:
или ,Отсюда
,3. Подвергаем эти точки дополнительному исследованию в табличной форме (таблица 1), учитывая, что заданная функция определена на участке
числовой оси:Таблица 1
-1,2 | ( ) | 0 | ( ) | 1 | ( ) | 2,5 | |
Знак | - | + | - | ||||
Величина | 32,88 | -6 | -1 | 244 | |||
Экстремум | m | M |
Итак,
В данном случае один из глобальных экстремумов совпадает с одним из локальных экстремумов.
6. Задача 6
Вычислить неопределенный интеграл методом подстановки
Решение
Выполним подстановку:
Продифференцируем обе части уравнения:
=7. Задача 7
Вычислить неопределенный интеграл от рациональной дроби
Решение
1. Найдем производную знаменателя:
2. Выделим в числителе выражение
, для этого умножим знаменатель на 2 и умножим дробь на , чтобы значение дроби не изменилось, и вынесем за знак интеграла.3. Запишем число
, как , получим:4. Разлагаем подынтегральное выражение на сумму элементарных дробей:
5. Вычислим интеграл
, для этого выражение внесем под знак дифференциала. Интеграл принимает табличный вид:6. Вычислим интеграл
, для этого выделим в знаменателе полный квадрат.Интеграл принимает табличный вид:
7. Записываем решение:
8. Задача 8
Вычислить определенный интеграл методом интегрирования по частям
Решение
9. Задача 9
По заданным координатам вершинам А, В, С треугольника определить его длины сторон, углы и площадь
А(-5; -5; 3);В(-4; 1; 1);С(1; 4; 0)
Решение
1. Записываем стороны треугольника в форме линейных разложений векторов и строим векторную схему треугольника (рис.1):
Рис. 2 Схема треугольника
2 Вычисляем длины сторон:
3. Определяем углы треугольника,