Для ответа на вопрос задачи 3 достаточно положить a=e, b=p и воспользоваться утверждением (1). Итак, ep > pe .
Пример 16: Два туриста отправились по одному маршруту. В первый день они прошли одно и то же расстояние. В каждый из следующих дней первый турист увеличивал пройденный путь, по сравнению предыдущим, на одно и то же расстояние, а второй – в одно и то же число раз. Выяснилось, что в n-тый день (n>2) путешествия туристы снова прошли одно и то же расстояние. Доказать, что за n дней первый турист прошел путь больший, чем второй.
Решение:
Расстояние, пройденное первым туристом за n дней, представляет собой сумму n первых членов арифметической прогрессии, а вторым – сумму n первых членов геометрической прогрессии. Обозначим эти расстояния соответственно Snи Sn/. Если a – первый член прогрессии, d – разность арифметической прогрессии, q – знаменатель геометрической прогрессии, то
Приравнивая n-е члены прогрессий, находим
Тогда
При n=3 имеем
Для завершения доказательства достаточно убедиться, то выражение
Пусть
Производная
3.2. Практическое применение производной при решении уравнений
Покажем, как с помощью производной можно решать вопросы существования корней уравнения, а в некоторых случаях и их отыскания. По-прежнему основную роль здесь будут играть исследования функции на монотонность, нахождение ее экстремальных значений. Кроме того, будет использован ряд свойств монотонных и непрерывных функций.
Свойство 1. Если функция f возрастает или убывает на некотором промежутке, то на этом промежутке равнение f(x)=0 имеет не более одного корня.
Это утверждение вытекает непосредственно из определения возрастающей и убывающей функций. Корень уравнения f(x)=0 равен абсциссе точки пересечения графика функции y=f(x) с осью x.
Свойство 2. Если функция f определена и непрерывна на промежутке [a,b] и на его концах принимает значения разных знаков, то между a и b найдется точка c, в которой f(c )=0.
Пример 17: Решить уравнение
Решение:
Заметим, что
Пример 18: Решить систему уравнений
Решение:
Система эквивалентна следующей:
Из первого уравнения следует, что
Она отрицательна при всех значениях t. Таким образом, функция f убывает. Поэтому уравнение
Пример 19: Доказать, что уравнение
Решение:
Уравнение равносильными преобразованиями приводится к виду
В примере требовалось доказать, что корень уравнения принадлежит некоторому промежутку. Мы пользовались свойством 2 непрерывной на отрезке функции, принимающей на концах этого отрезка значения разных знаков. Этот путь не всегда приводит к цели при решении подобных задач. Иногда целесообразно воспользоваться следующим свойством дифференцируемых функций.
Свойство 3 (Теорема Ролля). Если функция f непрерывна на отрезке [a,b], дифференцируема на интервале (a,b) и f(a)=f(b), то существует точка
На геометрическом языке свойство 3 означает следующее: если
Пример 20: Доказать, что уравнение