Теорема 2.10. Якщо
- розв'язна група порядку , де при , і якщо підгрупа групи порядку має клас нильпотентності теЗокрема, для будь-якої кінцевої розв'язної групи
. -підгрупа деякої факторгрупи , порядок якої ділить , має клас нильпотентності, не перевищуючий , так що ми можемо застосувати твердження леми 2.5 і одержати результат індукцією один по одному групи , допустивши що володіє тільки одною мінімальною нормальною підгрупою. Це буде -група для деякого простого числа , і ми можемо тому предполодить, що її порядок ділить . Тоді, якщо ми візьмемо в якості множина простих долителей числа , виявиться виконаної передумова леми 2.5. Якщо - найбільша нормальна -підгрупа групи й - її центр, то по наслідку леми 2.5 містить центр -підгрупи групи , що має порядок . Порядок -підгрупи групи ділить , тому клас нильпотентності її не більше . Для -підгрупи груп і порядку ізоморфні, так що в силу припущення індукції, застосованої до , одержимоТому що
, той доказ по індукції проведено.Перш ніж застосовувати лему 2.5 до доказу нерівності для
, зручно уточнити її для випадку, при якому складається з одного простого числа . Нехай є -розв'язна група з верхнім -поруч (2.2) . Тоді лема 2.5, застосована до групи , показує, що якщо - елемент групи , що не входить в , те трансформування елементом індуцируе у нетотожний автоморфізм. Необхідне уточнення складається в заміні групи групою , де - підгрупа Фратіні групи . Тепер - -група, і в такий спосіб - елементарна абелева -група. Ясно тому, що автоморфізм групи , індукований групи , тотожний. Таким чином, множина елементів групи , що тотожно трансформує , є нормальною підгрупою групи , такий, що . По визначенню фактор група не може бути -групою, відмінної від 1, тому якщо , те група повинна містити елемент , що не входить в і порядку, взаємно простого . Тоді індуцірує автоморфізм групи порядку, взаємно простого с. Але автоморфізм -групи, по модулю підгрупі Фратіні, має порядок, рівний ступені числа . Таким чином, індуцірує у нетотожний автоморфізм, що суперечить визначенню групи . Виходить, , що й було потрібно. У такий спосіб:Лема 2.11. Якщо
є -розв'язна група з верхнім -поруч (2.2) і якщо - підгрупа Фратіні групи , те автоморфизми групи , які індуковані трансформуваннями елементами групи , представляють точно.