Наслідок 2.12.
.По лемі група
не володіє неодиничної нормальної -підгрупою, і наступні члени її верхнього -ряду являють собою фактор групи по відповідних членів верхнього -ряду групи .Теорема 2.13. Для кожної
-розв'язної групи(I)
(II)
Ми можемо використовувати індукцію один по одному групи
й припустити, що володіє тільки одною мінімальною нормальною підгрупою . Очевидно, ми можемо також припустити, що , звідки наслідку з леми 2.11 , а, отже, , і - елементарна абелева -група. Тепер, думаючи , ми одержимо, що , так що по припущенню індукції містимо, що . Якщо - група порядку , то порядок її групи автоморфизмов дорівнюєтак що
. Відповідно до леми 2.11, група ізоморфна деякій підгрупі групи , так що , звідки . Таким чином,що й було потрібно.
З іншої сторони відповідно до наслідку 1 леми 2.7,
містить центр силовської -підгрупи групи , так що . Тому що , те індукція для (II) проводиться відразу.Нерівності, отримані десь, аж ніяк не є найкращими. Для непарних
їх значно можна підсилити. Однак при теорему 2.13 поліпшити не можна.Останню теорему можна застосувати для короткого доказу тверджень
і .3. Група з нильпотентними додаваннями до підгруп
У справжньому главі описані нерозв'язні кінцеві групи з нильпотентними додаваннями до несверхразрешимих підгруп. До цього класу груп ставляться, зокрема, і кінцеві групи із примарними індексами несверхразрешимих груп. Доводиться
Теорема 3.1. Кінцева нерозв'язна група з нильпотентними додаваннями до несверхразрешимих підгруп ізоморфна
або , де - нильпотентна група, а й - прості числа.Наслідок 3.2. Кінцева нерозв'язна група, у якій всі підгрупи непримарного індексу сверхразрешими, ізоморфна
або , де - -група, або , де - -група.Відзначимо, що кінцеві групи з нильпотентними підгрупами непримарного індексу вивчені С. С. Левищенко [13]. Серед них немає нерозв'язних груп.
Розглядаються тільки кінцеві групи. Всі позначення, що зустрічаються, і визначення стандартні, їх можна знайти в [2,14].
Нам знадобиться наступна
Лема 3.3. Нехай у кінцевій групі
кожна несверхразрешима група володіє нильпотентним додаванням. Тоді в будь-якій підгрупі й у будь-який фактор-групі групи кожна несверхразрешима підгрупа володіє нильпотентним додаванням.Proof. Нехай
- довільна підгрупа кінцевої групи , і нехай - несверхразрешимая підгрупа з . У групі існує нильпотентное додавання до підгрупи . Тому , а . Тепер - нильпотентна, і до можна взяти нильпотентне додавання в підгрупі .Нехай
- нормальна в підгрупа, і - несверхразрешимая в підгрупа. Тоді несверхразрешима, і існує нильпотентна підгрупа така, що . Тепер нильпотентна й , тобто до підгрупи можна знайти в нильпотентное додавання.Доведемо теорему.
Приклад. Шлях
- кінцева нерозв'язна група з нильпотентними додаваннями до підгруп. Тому що не -нильпотентна, те в існує -замкнута підгрупа Шмидта , де - нормальна в силовська 2-підгрупа, підгрупа - циклічна [14,c. 434]. Оскільки не є сверхразрешимої, те існує нильпотентна підгрупа така, що . З урахуванням парності порядку з теореми 2.8 [15] містимо, що фактор-група ізоморфна або , де - деяке просте число, а - найбільша розв'язна нормальна в підгрупа. Крім того,