1. Векторы. Действия над векторами.
Вектором наз. упорядоченная совокупность чисел Х={X1,X2,...Xn} вектор дан в n-мерном пространстве. Т(X1,X2,X3). n=1,2,3. Геометрический вектор - направленный отрезок. |AB|=|a| - длинна. 2 вектора наз. коллинеарными, если они лежат на 1 прямой или ||-ных прямых. Векторы наз. компланарными, если они лежат в 1-ой плоскости или в ||-ных плоскостях. 2 вектора равны, когда они коллинеарны, сонаправленны, и имеют одинак-ую длинну.
1.умножение на число: произведение вектора А на число l наз. такой вектор В, который обладает след. св-ми: а) А||В. б) l>0, то АВ, l<0, то А¯В. в)l>1, то А<В, )l<1, то А>В. 2. Разделить вектор на число n значит умножить его на число, обратное n: а/n=a*(1/n).
3.Суммой неск-их векторов а и в наз. соединяющий начало 1-го и конец последнего вектора. 4. Разностью векторов а и в наз-ся вектор c, который, будучи сложенным с вектором в даст вектор а.2.3. Декартова прямоугольная система координат. Базис.
Базисом на плоскости называется совокупность фиксированной точки и 2х неколлинеарных векторов, проведенных к ней.
Базисом в пространстве наз. совокупность фиксированной точки в пространстве и 3х некомпланарных векторов. Любой вектор на плоскости может быть разложен по векторам базиса на плоскости. Любой вектор в пространстве может быть разложен по векторам базиса в пространстве. ОС=OA+OB, OA=x*i, OB=j*y, OC=xi+yj. Числа х,у наз-ся координатами вектора ОС в данном базисе4. Действия над векторами.
а=х1i+y1j+z1k; b=х2i+y2j+z2k
l*a=l(х1i+y1j+z1k)= l(х1)i+l (y1)j+l(z1)k
a±b=(x1±x2)i+(y1±y2)j+(z1±z2)k
ab=x1x2ii+y1x2ij+x2z1ki+x1y2ij+y1y2jj+ z1y2kj+x1z1ik+y1z2jk+z1z2kk=x1x2+y1y2+z1z2
ii=1; ij=0; и т.д.
скалярное произведение 2х векторов равно сумме произведений соответствующих координат этих векторов.
аа=x2+y2+z2=|a|2 a{x,y,z}, aa=|a|*|a|, то a2=|a|2
ab=|a|*|b|*cosj
а)ав=0,<=>а^в, x1x2+y1y2+z1z2=0
б)а||в - коллинеарны, если , x1/x2=y1/y2=z1/z2
5. Скалярное произведение векторов и его свойства.
-(“skala”-шкала) 2х векторов а и в наз. число, равное произведению длин этих векторов на cos угла между ними. (а,в)- скалярное произведение. а*в=|а|*|в|*cosj, j=p/2, cosp/2=0, a^b=>ab=0. Равенство “0” скаляргного произведения необходимое и достаточное условие их перпендикулярности (ортогональности).
6. Векторное произведение 2х векторов.
левая ----- правая
Тройка векторов а,в,с наз. правоориентированной (правой), если с конца 3го вектора с кратчайший поворот от 1го ко 2му вектору мы будем видеть против час. стрелки. Если кратчайший поворот от 1го ко 2му по час. стрелки - левая. Векторным произведением 2х векторов а и в наз. такой вектор с, который удовлетворяет условиям: 1. |c|=|a|*|b|*sinj. 2. c^a и c^b. 3. тройка а,в,с-правая.
7. Смешанное произведение векторов и его свойства.
Смешанным произведением векторов наз. векторно-скалярное произведение, являющееся числом: a*b*c=[a*b]*c=a*[b*c], где
a={ax,ay,az}
b={bx,by,bz}
c={cx,cy,cz}
Св-ва:
1. При перестановке 2х сомножителей:
a*b*c=-b*c*a
2. не меняется при перестановке циклических сомножителей:
a*b*c=c*a*b=b*c*a
3.а)(Геометрич. смысл) необходимым и достаточным условием компланарности 3х векторов явл. равенство a*b*c=0
б)если некомпланарные вектора a,b,c привести к 1 началу, то |a*b*c|=Vпараллепипеда, построенного на этих векторах
если a*b*c>0, то тройка a,b,c - правая
если a*b*c<0, то тройка a,b,c - левая
8. Уравнение линии и поверхности.
1. Уравнение сферы. Сфера- геометрическое место точек, равноудаленных от 1ой точки, называемой центром.
O(a,b,c)|OM|=r, OM={x-a,y-b,z-c}
r2=(x-a)2+(y-b)2+(z-c)2- уравнение сферы. x2+y2+z2=r2- ур-е сферы с центром точке(0,0).
F(x,y,z)=0- ур-е поверхности - ур-ю, удовлетворяющему координатам x,y,z любой точки, лежащей на поверхности.
2. Уравнение окружности
|OM|=r, OM={x-a,y-b)r2=(x-a)2+(y-b)2+(z-c)2- ур-е окружности
а=b=0, то x2+y2=r2
F(x,y)=0- ур-е линии на плоскости.
9. Плоскость в пространстве.
Ур-е в плоскости, проходящей через данную точку, перпендикулярно заданному вектору.
N-вектор нормалиM0M{x-x0,y-y0,z-z0}
Для того, чтобы точка MÎP, необходимо и достаточно чтобы вектора N^M0M(т.е. N*M0M=0)
A(x-x0)+B(y-y0)+С(z-z0)=0 - ур-е плоскости, проходящей через данную точку ^вектору.
10. Общее уравнение плоскости.
Ax+By+Сz-Ax0-By0-Сz0=0
-Ax0-By0-Сz0=D, где D=Ax+By+Сz
Ax+By+Сz+D=0
Частный случай:
Если D=0, то Ax+By+Сz=0(проходит ч/з 0;0)
Если A=0, то By+Сz+D=0
Если B=0, то Ax +Сz+D=0
Если C=0, то Ax+By+D=0
Если A=B=0, то Сz+D=0
Если A=C=0, то By+D=0
Если A=D=0, то By+Сz=0
Если B=D=0, то Ay+Сz=0
11. Взаимное расположение плоскостей.
N1,N2-нормальные векторы плоскости.
P:A1x+B1y+C1z+D1=0
Q:A2x+B2y+C2z+D2=0
P^Q{A1,B1,C1}
Q^N2{A2,B2,C2}
1)Пусть P^Q<=>N1^N2
A1A2+B1B2+C1C2=0 условие перпендикулярности P^Q.
2) Пусть P^Q<=> N1^N2
A1/A2=B1/B2=C1/C2- Условие параллельности 2х плоскостей.
A1/A2=B1/B2=C1/C2=D1/D2- Условие совпадения 2х плоскостей.
12. Каноническое уравнение прямой в пространстве.
M0M{x-x0,y-y0,z-z0}
Чтобы точка МÎпрямой(или лежала на ней) необх. и достаточно, чтобы M0M||S
13. Уравнение прямой в пространстве, проходящей ч/з 2 заданные точки.
lmn
S{x2-x1,y2-y1,z2-z1}
14. прямая, как пересечение плоскостей. Нахождение начальной точки и направляющего вектора прямой.
P:A1x+B1y+C1z+D1=0
Q:A2x+B2y+C2z+D2=0
Общее ур-е прямой в пространстве.
Для того, чтобы перейти от общего к каноническому ур-ю прямой, надо задать начальную точку и направляющий вектор:
1. Найдем начальную точку:
Z=0
M0(x0,y0,0), т.к. Z=0
2. Найдем направляющий вектор S-?
P^N1{A1,B1,C1}
Q^N1{A2,B2,C2}
S=N1*N2
16. Взаимное расположение прямой на плоскости.
P:A1x+B1y+C1z+D1=0^N1{A1,B1}
Q:A2x+B2y+C2z+D2=0^N2{A2,B2}
а)
то
б)
pq<=> N1||N2, то A1/A2=B1/B2