Корреляционный анализ.
1. Сбор и анализ данных.
Будем считать, что данные, кот. нам даны – это случайная выборка.
Анализ данных – проводится с целью принятия гипотезы о виде корр. зависимости. График корр. поля. Если принимается гипотеза о линейной зависимости, то
2. Вычисл. лин. коэфф. корр.
3. Проверка стат. значимости
а) принимается нулевая гипотеза об отсутствии корр. в ген. совок-ти
б) альт. гип-за, что корр. есть
, где Р – дов. интер-ал - ур-ень знач. гипотезы.а)
Отличие коэфф. корр. от нуля не случайно, выборочн. коэфф. корр. статистич. значим. С вероятностью Р корр. есть.б)
Нет основания отвергнуть , в выборке корр. есть, а в ген. сов-ти нет. Выборка случайна. Коэфф. корр. стат. незначим.4. Выводы и рекомендации.
а) Наличие достаточно большого по величине стат. значимого выборочного коэфф. корр. свидет-ет о наличии достат. тесной корр. зав-ти м/у исследуемыми показателями т.е. изменение одного показателя ведет за собой изменение ср. знач-я другого показ-ля и это св-во с опред. вероятностью распространяется на всю ген. совокупность.
Если ЛПР считает политику в прошлом правильной, тоее можно распространить на будущее.
б) Если наоборот, то политика была неэфф., в будущем ее надо менять.
Множеств. корреляция.
Коэфф. множеств. корр. показывает степень влияния всех остальных факторов на один (два…). Составляется матрица парных коэффициентов корр-ции:
или теперь: , где - определитель полной корр. матрицы, а - определитель полной корр. матрицы без k-ого столбца и k-ой строки.Частная корреляция.
Частный коэфф-ент корр. показывает м/у двумя факторами при исключении третьего (в отличии от парного коэффициента, кот. не исключает влияния остальных факторов).
- частная формула(общая имеет вид
, где )Чем ближе частный коэфф. корр. к парному, тем меньше влияние третьего фактора на первые 2.
Проверка стат. значимости.
Аналогично выдвигаются две гипотезы.
Гипотезы проверяются с помощью t-статистики Стьюдента
где L – число исключаемых факторов, n– число степеней свободы.а)
- гипотеза об отсутствии влияния исключаемых факторов на рассматриваемые отклоняется. Исключаемые факторы влияют на взаимосвязь рассматр. факторов с вероятностью .б)
- принимаем гипотезу об отсутствии влияния исключаемых факторов на рассматриваемые. Исключ. факторы не влияют с вероятностью ошибки .Регрессионный анализ.
1 этап. Построение задачи и определение цели регрессии исследования.
2 этап. Сбор и анализ данных.
3 этап. Спецификация.
4 этап. Оценка качества модели.
а) Анализ остатков.
1) Графический способ.
Наблюдение, кот. связано с выбросом, исключается таблицы данных и модель пересчитывается снова для нового объема данных.
2) Критерий серий.
, , где - число серий, - длина ряда, - макс. длина серии. При этом если , то , если , то . Если хотя бы одно неравенство нарушено, то гипотезу о случайности отвергают.3) Критерий Дарбина-Уотсона.
Принимается гипотеза
и альтернативная ей .По таблице (
- число наблюдений, - число факторов в модели) находятся значения и . Положительнаяавтокорреляция ? Автокорреляция отсутствует ? Отрицат. автокорреляция
0 4- 4- 4Выводы:
Остатки удовлетворяют основным требованиям регрессионного анализа и можно переходить к следующему этапу;
Остатки не удовлетворяют основным требованиям регрессионного анализа, необходимо вернуться к исследованию спецификации модели на первом и втором этапах.
б) Анализ качества коэфф. регрессии.
Принимается гипотеза о том, что в ген. совок-ти фактор
не оказывает воздействия на изменение результативного признака т.е. нет регресс. зависимости м/у и .Проверка этой гипотезы осущ. с помощью t-статистики:
, где - оценка коэфф. регрессии, - оценка стандартной ошибки коэфф. регрессии в модели: , где ; - остатки, - число наблюдений, - число факторов в модели, - диагональный элемент обратной матрицы системы нормальных уравнений.Если
, то данные наблюдений с уровнем значимости дают основания для отклонения гипотезы об отсутствии корр. зав-ти м/у фактором и , коэфф. регрессии стат. значим, его отличие от нуля не случайно.Если
, то данные наблюдений с уровнем значимости дают основания для принятия гипотезы об отсутствии регрессионной зависимости м/у фактором и , выборочный коэфф. регрессии стат. незначим, его отличие от нуля случайно, фактор не оказывает стат. значимого воздействия на изменение результативного признака . Фактор следует исключить из модели.