В результате мы найдем оценки для сглаженных значений
Подбор наилучшего (в смысле критерия МНК) аппроксимирующего полинома к траектории анализируемого временного ряда приводит к формуле вида (П2.9), причем результат не зависит от того, для какого именно из «скользящих» временных интервалов был осуществлен этот подбор.
Метод экспоненциально взвешенного скользящего среднего (метод Брауна [Brown (1963)]). В соответствии с этим методом оценка сглаженного значения
где 0 < l < 1. Следовательно, веса lk в критерии Q(f) обобщенного («взвешенного») МНК уменьшаются экспоненциально по мере удаления наблюдений xt-k в прошлое.
Решение оптимизационной задачи (П2.10) дает:
В отличие от обычного МСС здесь скользит только правый конец интервала усреднения и, кроме того, веса экспоненциально уменьшаются по мере удаления в прошлое. Формула (П2.11) дает оценку сглаженного значения временного ряда не в средней, а в правой конечной точке интервала усреднения.
Реализация алгоритмических методов выделения неслучайной составляющей временного ряда связана с необходимостью подбора порядка p локально-аппроксимирующего полинома. Эта же задача возникает и при реализации аналитических методов выделения неслучайной составляющей. При решении этой задачи широко используется так называемый метод последовательных разностей членов анализируемого временного ряда, который основан на следующем математическом факте: если анализируемый временной ряд xt содержит в качестве своей неслучайной составляющей алгебраический полином f(t) = q0 + q1t + qptp порядка p, то переход к последовательным разностям порядка p + 1, исключает неслучайную составляющую, оставляя элементы, выражающиеся только через остаточную случайную компоненту et.
Обсудим способ подбора порядка p полинома, представляющего собой неслучайную составляющую f(t) в разложении анализируемого временного ряда xt. Заметим, прежде всего, что если мы знаем, что среднее значение наблюдаемой случайной величины x равно нулю (Ex = 0), то выборочным аналогом ее дисперсии является величина
E(Dkxt) = 0 и
С учетом этих замечаний можно сформулировать следующее правило подбора порядка сглаживающего полинома p, называемое методом последовательных разностей.
Последовательно для k = 1, 2,… вычисляем разности Dkxt (t = 1,…, T-k), а также величины
Анализируем поведение величины
Этот метод привлекателен своей простотой, но его практическое применение требует определенной осторожности. Последовательные значения
П2.3. Модели стационарных временных рядов и их идентификация. Модели авторегрессии порядка p (AR(p)-модели)
В П2.2 рассматривался класс стационарных временных рядов, в рамках которого подбирается модель, пригодная для описания поведения случайных остатков исследуемого временного ряда (1.1.1). Здесь рассматривается набор линейных параметрических моделей из этого класса и методы их идентификации. Таким образом, речь здесь идет не о моделировании временных рядов, а о моделировании их случайных остатков et, получающихся после элиминирования из исходного временного ряда xt его неслучайной составляющей (П2.8). Следовательно, в отличие от прогноза, основанного на регрессионной модели, игнорирующего значения случайных остатков, в прогнозе временных рядов существенно используется взаимозависимость и прогноз самих случайных остатков.
Введем обозначения. Так как здесь описывается поведение случайных остатков, то моделируемый временной ряд обозначим et, и будем полагать, что при всех t его математическое ожидание равно нулю, т.е. Eet, º 0. Временные последовательности, образующие «белый шум», обозначим dt.
Описание и анализ, рассматриваемых ниже моделей, формулируется в терминах общего линейного процесса, представимого в виде взвешенной суммы настоящего и прошлых значений белого шума, а именно:
где b0 = 1 и
Таким образом, белый шум представляет собой серию импульсов, в широком классе реальных ситуаций генерирующих случайные остатки исследуемого временного ряда.
Временной ряд et можно представить в эквивалентном (П2.13) виде, при котором он получается в виде классической линейной модели множественной регрессии, в которой в качестве объясняющих переменных выступают его собственные значения во все прошлые моменты времени:
При этом весовые коэффициенты p1,p2,… связаны определенными условиями, обеспечивающими стационарность ряда et. Переход от (П2.14) к (П2.13) осуществляется с помощью последовательной подстановки в правую часть (П2.14) вместо et-1,et-2,… их выражений, вычисленных в соответствии с (П2.14) для моментов времени t- 1, t- 2 и т.д.
Рассмотрим также процесс смешанного типа, в котором присутствуют как авторегрессионные члены самого процесса, так и скользящее суммирование элементов белого шума:
Будем подразумевать, что p и q могут принимать и бесконечные значения, а также то, что в частных случаях некоторые (или даже все) коэффициенты p или b равны нулю.
Рассмотрим сначала простейшие частные случаи.
Модель авторегрессии 1-го порядка - AR(1) (марковский процесс). Эта модель представляет собой простейший вариант авторегрессионного процесса типа (П2.14), когда все коэффициенты кроме первого равны нулю. Соответственно, она может быть определена выражением