3. Простейшие типы точек покоя.
Пусть имеем систему дифференциальных уравнений
æ dx / dt = P ( x , y ),
í(A)
î dy / dt = Q ( x , y ).
Точка ( x0 , y0 ) называется точкой покоя или особой точкой системы (A), если P ( x0 , y0 ) = 0 , Q ( x0 , y0 ) = 0.
Рассмотрим систему
æ dx / dt = a11 x + a12 y,
í(7)
î dy / dt = a21 x + a22 y.
где aij ( i , j = 1 , 2 ) - постоянные. Точка ( 0 , 0 ) является точкой покоя системы (7). Исследуем расположение траектории системы (7) в окрестности этой точки. Ищем решение в виде
x = a1 e k t , y = a2 e k t . (8)
Для определения k получаем характеристическое уравнение
a11 - k a12 = 0. (9)
a21 a22 - k
Рассмотрим возможные случаи.
I. Корни характеристического уравнения действительны и различны. Подслучаи :
1) k1 < 0, k2 < 0. Точка покоя асимптотически устойчива (устойчивый узел).
2) k1 > 0, k2 > 0. Точка покоя неустойчива (неустойчивый узел).
3) k1 > 0, k2 < 0. Точка покоя неустойчива (седло).
4) k1 = 0, k2 > 0. Точка покоя неустойчива.
5) k1 = 0, k2 < 0. Точка покоя устойчива, но не асимптотически.
II. Корни характеристического уравнения комплексные : k1 = p + q i, k2 = p - q i. Подслучаи :
1) p < 0 , q ¹ 0. Точка покоя асимптотически устойчива (устойчивый фокус).
2) p > 0 , q ¹ 0. Точка покоя неустойчива (неустойчивый фокус).
3) p = 0, q ¹ 0. Точка покоя устойчива (центр). Асимптотической устойчивости нет.
III. Корни кратные: k1 = k2 . Подслучаи :
1) k1 = k2 < 0. Точка покоя асимптотически устойчива (устойчивый узел).
2) k1 = k2 > 0. Точка покоя неустойчива (неустойчивый узел).
3) k1 = k2 = 0. Точка покоя неустойчива. Возможен исключительный случай, когда все точки плоскости являются устойчивыми точками покоя.
Для системы линейных однородных уравнений с постоянными коэффициентами
dxin
= å ai j xj ( i = 1 , 2 , ... , n ) (10) dt i=1
характеристическим уравнением будет a11 - k a12 a13 ... a1n a21 a22 - k a23 ... a2n = 0. (11)
. . . . . . . .
an1 an2 an3 ... ann - k
1) Если действительные части всех корней характеристического уравнения (11) системы (10) отрицательны, то точка покоя xi ( t ) º 0 ( i = 1 , 2 , ... , n ) асимптотически устойчива.
2) Если действительная часть хотя бы одного корня характеристического уравнения (11) положительна, Re k i = p i > 0, то точка покоя xi ( t ) º 0 ( i = 1, 2, ... n ) системы (10) неустойчива.
3) Если характеристическое уравнение (11) имеет простые корни с нулевой действительной частью (т.е. нулевые или чисто мнимые корни ), то точка покоя xi ( t ) º 0 ( i = 1, 2, ... n ) системы (10) устойчива, но не асимптотически.
Для системы двух линейных линейных уравнений с постоянными действительными коэфициентами
.
æ x = a11 x + a12 y,
í . (12)
î y = a21 x + a22 y
характеристическое уравнение (9) приводится к виду
k2 + a1 k + a2 = 0.
1) Если a1 > 0 , a2 > 0, то нулевое решение системы (12) асимптотически устойчиво.
2) Если а1 > 0 , a2 = 0, или a1 = 0 , a2 > 0 , то нулевое решение устойчиво, но не асимптотически.
3) Во всех остальных случаях нулевое решение неустойчиво; однако при a1 = a2 = 0 возможен исключительный случай, когда нулевое решение устойчиво, но не асимптотически.
4. Критерий устойчивости Михайлова.
Частотные критерии устойчивости получили наиболее широкое практическое применение, так как, во-первых, они позволяют судить об устойчивости замкнутой системы по более простой передаточной функции системы W ( s ) ; во-вторых, анализ устойчивости можно выполнять и по экспериментально определенным частотным характеристикам; в-третьих, с помощью частотных характеристик можно судить и о качестве переходных процессов в системе.