А.В. Михайлов первым предложил использовать развитые в радиотехнике Найквистом частотные методы для анализа устойчивости линейных систем регулирования. Сформулированным им в 1938 г. критерий устойчивости назвали его именем. Рассмотрим существо этого критерия.
Пусть характеристическое уравнение замкнутой системы имеет вид
D ( l ) = ln + a1ln-1 + a2ln-2 + ... + an = 0. (13)
Зная его корни l1 , l2 , ... , ln , характеристический многочлен для уравнения (13) запишем в виде
D ( l ) = ( l - l1 ) ( l - l2 ) ... ( l - ln ). (14)
Im Im 0 Re 0 Re а) б) |
Рис.12. Векторное изображение сомно-жителей характерис-тического уравнения замкнутой системы на плоскости :
а - для двух корней l и li ;
б - для четырех корней l1 , l ‘1 , l2 , l ‘2
Графически каждый комплексный корень l можно представить точкой на плоскости. Поэтому, в свою очередь, каждый из сомножителей уравнения (14) можно представить в виде разности двух векторов ( l - li ), как это показано на рис.12,а. Положим теперь, что l = j w ; тогда определяющей является точка w на мнимой оси (рис.12,б). При изменении w от - ¥ до + ¥ векторы j w - l1 и j w - l ‘1 комплексных корней l и l ‘1 повернуться против часовой стрелки, и приращение их аргумента равно + p , а векторы j w - l2 и j w - l ‘2 повернутся по часовой стрелке, и приращение их аргумента равно - p . Таким образом, приращение аргумента arg( j w - li ) для корня характеристического уравнения li , находящегося в левой полуплоскости, составит + p , а для корня, находящегося в правой полуплоскости, - p . Приращение результирующего аргумента D arg D( j w ) равно сумме приращений аргументов его отдельных сомножителей. Если сре1ди n корней характеристического уравнения m лежит в правой полуплоскости, то приращение аргумента составит
D arg D( j w ) = ( n - m ) p - m p = ( n - 2m ) p . (15)
- ¥ < w < ¥для левой для правойполуплоскости полуплоскости
Отметим теперь, что действительная часть многочлена
D ( j w ) = ( j w )n + a1 ( j w )n-1 + a2 ( j w )n-2 + ... + an(16)
содержит лишь четные степени w , а мнимая его часть - только нечетные, поэтому
arg D ( j w ) = - arg D ( -j w ), (17)
и можно рассматривать изменение частоты только на интервале w от 0 до ¥ . В этом случае приращение аргумента годографа характеристического многочлена
D arg D( j w ) = ( n - 2m ) p / 2 . (18)
0 £w < ¥
Если система устойчива, то параметр m = 0, и из условия (18) следует, что приращение аргумента
D arg D( j w ) = n p / 2 . (19)
0 £w < ¥
На основании полученного выражения сформулируем частотный критерий устойчивости Михайлова: для того чтобы замкнутая система автоматического регулирования была устойчива, необходимо и достаточно, чтобы годограф характеристического многочлена в замкнутой системе (годограф Михайлова) начинался на положительной части действительной оси и проходил последовательно в положительном направлении, не попадая в начало координат, n квадрантов комплексной плоскости ( здесь n - порядок характеристического уравнения системы).
j V’ j V’ 0 U’ 0 U’ а) б) |
Рис.13. Примеры годографов Михайлова для различных характеристических уравнений замкнутых систем:
а - устойчивые системы при n = 1 - 6 ; б - неустойчивые системы при n = 4 и различных параметрах
Соответствующие устойчивым системам годографы Михайлова для уравнений различных порядков построены на рис. 13,а. На рис. 13,б построены годографы Михайлова для неустойчивых систем при n = 4.