Введение
Одной из основных задач теории автоматического регулирования является изучение динамических процессов, происходящих в автоматических системах. Автоматические системы при нормальной эксплуатации должны поддерживать определенный режим работы объекта регулирования при действии на него многих возмущающих факторов. Такое поведение может быть достигнуто лишь в системах автоматического регулирования, обладающих устойчивостью по отношению к этим воздействиям. Устойчивость системы означает, что малое изменение входного сигнала или какого-нибудь возмущения, начальных условий или параметров не приведут к значительным отконениям выходного сигнала. Это определение раскрывает физический смысл понятия устойчивости.
Теория устойчивости, основоположниками которой являются великий русский ученый А.М. Ляпунов и великий французский ученый А.Пуанкаре, представляет собой важный раздел прикладной математики. Создателями современной теории устойчивости являются русские ученые Н.Г. Четаев, Е.А. Барбашин, Н.П. Еругин, Н.Н. Красовский.
1. Понятие устойчивости, асимптотической устойчивости и неустойчивости по Ляпунову.
Рассмотрим задачу Коши для нормальной системы дифференциальных уравнений
x’ = f ( t , x )
с начальными условиями x ( t0 ) = x0 (2)
где x = ( x1, x2, ... , xn ) - n - мерный вектор; t Î I = [t0, + ¥ [ - независимая переменная, по которой производится дифференцирование;f ( t, x ) = ( f1 ( t , x ) , f2 ( t , x ) , ... , fn ( t , x ) ) - n - мерная вектор - функция.
Комментарии к задаче Коши (1), (2). Для простоты восприятия эту задачу можно сначала трактовать как задачу Коши для скалярного дифференциального уравнения первого порядка вида x’= f ( t , x ) с начальным условием x ( t0 ) = x0. С целью упрощения все рисунки п. 10 ,если нет специальных оговорок, приводится для случая n = 1.
x 0 t Рис.1 |
Если, кроме того, отклонение решения x ( t ) стремится к нулю при t ® + ¥для достаточно малых D x0 , т.е. $D > 0 "D x0.
| D x0 | £DÞ | x ( t ; t0 , x0 + D x0 ) - x ( t ) | ® 0 , t ® + ¥. (3) то решение x ( t ) системы (1) называется асимптотически устойчивым в положительном направлении (или асимптотически устойчивым).Аналогично определяются различные типы устойчивости решения в отрицательном направлении.
Комментарий к определению 1. 1) Геометрически устойчивость по Ляпунову решение х ( t ) можно интерпритировать следующим образом ( рис.1 ) : все решения x ( t ; t0 , x0 + D x0 ) , близкие в начальный момент t0 к решению x ( t ) (т.е. начинающиеся в пределах d - трубки ) , не выходят за пределы e - трубки при всех значениях t ³ t0 .x 0 t Рис.2 |