Смекни!
smekni.com

Класична лінійна регресія (стр. 3 из 3)

Rkkта Rjj – відповідні діагональні елементи цієї матриці.

За вимогами роботи треба розрахувати коефіцієнт множинної кореляції R:

R =

де R2 – коефіцієнт детермінації;

0,926322 – тіснота зв’язку між Y і X для нашої регресії є досить великою.

Його значущість перевіряється також за допомогою t-статистики (нульова гіпотеза – R незначущо відрізняється від 0). В цьому випадку розрахункове значення крітерію визначається за формулою:

Розрахункое значення t-статистики порівнюється за абсолютною величиною з табличним t10-4 = 1,943. Оскільки розрахункове значення більше, коефіцієнт кореляції є статистично значущим.

4. Побудова прогнозу по регресійній моделі

Точковий прогноз. Задані прогнозні Х01, Х02, Х03 для певного 0-го періоду. Прогнозне значення Y0 для цього періоду розраховується по формулі:

Y0=

Якщо Х01 = 252, Х02=0,35, а Х03= 128 (задаються дослідником або визначаються по продовженню тенденції їх зміни), то точковий прогноз на 0-й період складе:

Y0 =

= -23,83+0,23 * 252 + 9,02 0,35 + 0,10*128 = 49,07704,

чи в матричному вигляді:

Y = BТ*X0=

49,07704

Де В – матриця оцінок параметрів моделі. Його стандартна похибка складає

16,60574

Інтервальнийпрогноз визначається як

=49,07704
1,943*24,1312*
= =49,07704
11,58627