Потенциальная возможность математического моделирования любых экономических объектов и процессов не означает, разумеется, её успешной осуществимости при данном уровне экономических и математических знаний, имеющейся конкретной информации и вычислительной технике. И, хотя нельзя указать абсолютные границы математической формализуемости экономических проблем, всегда будут существовать неформализованные ещё проблемы, для которых математическое моделирование недостаточно эффективно.
С экономической точки зрения оптимальные решения, полученные с помощью экономическо-математического моделирования, обладают следующими основными свойствами:
1. Оптимальность решения зависит от целей, поставленных при планировании процесса. Например, выбор типа транспорта по критерию стоимости перевозки будет отличаться от выбора по критерию скорости.
2. Оптимальность решения зависит от текущей хозяйственной обстановки (иными словами, оптимум всегда конкретен, его нельзя вычислять абстрактно).
3. Существенные изменения оптимального варианта происходят только при значительных изменениях обстановки - это свойство называется устойчивостью базиса оптимального плана относительно малых изменений условий (т.е. оптимальные решения можно находить достаточно надёжно, несмотря на приблизительный характер почти всей экономической информации).
4. При определении взаимозависимости решений по всем объектам экономики особое значение имеют обратная связь объектов и издержки обратной связи. Например, если предприятия А и Б потребляют один и тот же ограниченный ресурс, то увеличение доли предприятия А уменьшает долю предприятия Б (обратная связь).
Возможно, потребление данного ресурса (сырья, топлива высшего сорта) снижает производственные издержки. Тогда, увеличение доли предприятия А приведёт к экономии на этом предприятии и к дополнительным издержкам на предприятии Б в результате замены ресурса менее эффективным (издержки обратной связи).
5. Оценка рациональности конкретного мероприятия зависит от уровня управления: решение, оптимальное для отдельного предприятия, может быть неоптимальным для отрасли или экономики в целом.
4. Проблемы экономико-математического моделирования
Объектом для экономико-математического моделирования является полностью структурированные проблемы. Частично или слабо структурированные проблемы, определяются во втором блоке, является объектами для методов системного анализа, сочетающих неформализованные решения специалистов с модельными расчётами по отдельным предметам.
Неструктурированные проблемы является объектами для экспертных решений, принимаемых на основе опыта и интуиции специалистов
Уже длительное время главным тормозом практического применения математического моделирования в экономике является сложность наполнения разработанных моделей конкретной и качественной информацией. Точность и полнота первичной информации, реальные возможности её сбора и обработки во многом определяют выбор типов прикладных моделей. С другой стороны, исследования по моделированию экономики выдвигают новые требования к системе информации.
В зависимости от моделируемых объектов и назначения моделей используемая в них исходная информация имеет существенно различный характер и происхождение. Она может быть разделена на две категории: о прошлом развитии и современном состоянии объектов (экономические наблюдения и их обработка) и о будущем развитии объектов, включающую данные об ожидаемых изменениях их внутренних параметров и внешних условий (прогнозы). Вторая категория информации является результатом самостоятельных исследований, которые так же могут выполняться посредством моделирования.
Методы экономических наблюдений и использование результатов этих наблюдений разрабатываются эконометрикой. Поэтому стоит отметить только специфические проблемы экономических наблюдений, связанные с моделированием экономических процессов.
В экономике многие процессы являются массовыми, они характеризуются закономерностями, которые не обнаруживаются на основании лишь одного или нескольких наблюдений. Поэтому моделирование в экономике должно опираться на массовые наблюдения.
Другая проблема порождается динамичностью экономических процессов, изменчивостью их параметров и структурных отношений. Вследствие этого экономические процессы приходится постоянно держать под наблюдением, необходимо иметь устойчивый поток новых данных. Поскольку наблюдения за процессами и обработка эмпирических данных обычно занимают довольно много времени, то при построении математических моделей экономики требуется корректировать исходную информацию с учётом её запаздывания.
Познание количественных отношений экономических процессов и явлений опирается на экономические измерения. Точность измерений в значительной степени предопределяет и точность конечных результатов количественного анализа посредством моделирования. Поэтому необходимым условием эффективного использования математического моделирования является совершенствование экономических измерителей. Применение математического моделирования заострило проблему измерений и количественных различных аспектов и явлений социально-экономического развития, достоверности и полноты получаемых данных, их защиты от намеренных и технических искажений.
В процессе моделирования возникает взаимодействие «первичных» и «вторичных» экономических измерителей. Любая модель в экономике опирается на определённую систему экономических измерителей (продукции, ресурсов элементов и т.д.). В то же время одним из важных результатов экономико-математического моделирования является получение новых (вторичных) экономических измерителей - экономически обоснованных цен на продукцию различных отраслей, оценок эффективности разнокачественных природой ресурсов, измерителей общественной полезности продукции. Однако, эти вторичные измерители могут испытывать влияние недостаточно обоснованных первичных измерителей, что вынуждает разрабатывать особую методику корректировки первичных измерителей для экономических моделей.
С точки зрения «интересов» моделирования экономики в настоящее время наиболее актуальными проблемами совершенствования экономических измерителей являются: оценка результатов интеллектуальной деятельности (особенно в сферё научно- технических разработок, индустрии информатики), построение обобщающих показателей экономического развития, измерение эффектов обратных связей (влияние экономических и социальных механизмов на эффективность производства).
Для методологии планирования экономики важное значение имеет понятие неопределённости экономического развития. В исследованиях по экономическому прогнозированию и планированию различают два типа неопределённости: «истинную», обусловленную свойствами экономических процессов, «информационную», связанную с неполнотой и неточностью имеющейся информации об этих процессах. Истинную неопределённость нельзя смешивать с объективным существованием различных вариантов экономического развития и возможностью сознательного выбора среди них эффективных вариантов. Речь идёт о принципиальной невозможности точного выбора единственного (оптимального) варианта.
В развитии экономики неопределённость вызывается тем, что ход планируемых и управляемых процессов, а также внешние воздействия на эти процессы не могут быть точно предсказаны из-за действия случайных факторов и ограниченности человеческого познания в каждый момент. Особенно характерно это для прогнозирования научно- технического прогресса, потребностей общества, экономического поведения. Неполнота и неточность информации об объективных процессах и экономическом поведении усиливают истинную неопределённость.
На первых этапах исследований по моделированию экономики применились в основном модели детерминистского типа. В этих моделях все параметры предполагаются точно известными. Однако, детерминистские модели неправильно понимать в механическом духе и отождествлять их с моделями, которые лишены всех “степеней выбора” (возможностей выбора) и имеют единственное допустимое решение. Классическим представителем жёстко детерминистских моделей являлась оптимизационная модель народного хозяйства, которая применялась для определения наилучшего варианта экономического развития среди множества допустимых вариантов.
В результате накопления опыта использования жестко детерминистских моделей были созданы реальные возможности успешного применения более совершенной методологии моделирования экономических процессов, учитывающих стохастику и неопределённость. Здесь можно выделить такие основные направления исследований как: усовершенствование методики моделей жестко детерминистского типа, проведение многовариантных расчётов и модельных экспериментов с вариацией конструкции модели и её исходных данных, изучение устойчивости и надежности получаемых решений, выделение зоны неопределённости, включение в модель резервов, применение приёмов, повышающих приспособляемость экономических решений вероятным и непредвиденным ситуациям, а также распространение моделей, непосредственно отражающих сложность и неопределённость экономических процессов и соответствующий математический аппарат: теорию вероятностей и математическую статистику, теорию игр и статистических решений, теорию массового обслуживания, стохастическое программирование, теорию случайных процессов.
Выводы
Модель - это материальный или мысленно представляемый объект, который в процессе исследования замещает объект - оригинал, так, что его непосредственное изучение даёт новые знания об объекте - оригинале.