,
, при условии, что справедливо соотношение (2.4) дляПри нахождении моментов оценок спектральных плотностей вторых и высших порядков появляются функции вида
(2.6)где
задаются соотношениемЧтобы выделить определенные характеристики спектральных оценок, нередко прибегают к сглаживанию значений на концах случайного временного ряда. Временное сглаживание представляет собой умножение ряда на «окно данных».
В соотношении (2.3) введена функция
, называемая окном просмотра данных (множителем сходимости, коэффициентом сглаживания).Функцию
(3.1) называют частотным окном. Из соотношения (3.1) вытекает, чтоХарактерное поведение функции
состоит в том, что она становится все более сконцентрированной в окрестности нуля при .Примеры окон просмотра данных:
1.
1 – окно Дирихле;2.
1- – окно Фейера;3.
;4.
– окно Хэннинга;5.
– окно Хэмминга;6.
– окно Хэмминга;7.
, где – окно Хэмминга;8.
1- – окно Рисса.В данной работе исследована оценка спектральной плотности вида
где
, а периодограмма задана следующим соотношениемПостроены графики этой оценки для различных окон данных на основании данных, представляющих собой последовательность наблюдений - температуры воздуха в городе Бресте с октября 2008 по февраль 2009 года.
Графики построены также для центрированного случайного процесса.
1. Андерсон Т. Статистический анализ временных рядов. – М.: Мир, 1976. – 755 с.
2. Бриллинджер Д. Временные ряды. Обработка данных и теория. - М.: Мир, 1980. - 536 с.
3. Журбенко И.Г. Спектральный анализ временных рядов. - М.: Изд-во МГУ, 1982. - 168 с.
4. Труш Н.Н. Асимптотические методы статистического анализа временных рядов. – Мн.: БГУ, 1999. - 218 с.
5. Труш Н.Н., Мирская Е.И. Случайные процессы. Преобразования Фурье наблюдений. – Мн.: БГУ, 2000.
Для исследования оценки (3.1) был исследован ряд, состоящий из 176 наблюдений ежедневной температуры воздуха в городе Бресте с октября 2008 по февраль 2009 года.
Рис. 1 - График оценки спектральной плотности (2.1) для окна Дирихле
Рис. 2 - График оценки спектральной плотности (2.1) для окна Дирихле для центрированного случайного процесса
Рис. 3 - График оценки спектральной плотности (2.1) для окна Фейера
Рис. 4 - График оценки спектральной плотности (2.1) для окна Фейера для центрированного случайного процесса
Рис. 5 - График оценки спектральной плотности (2.1) для окна вида 3
Рис. 6 - График оценки спектральной плотности (2.1) для окна вида 3 для центрированного случайного процесса
Рис. 7 - График оценки спектральной плотности (2.1) для окна Хэннинга
Рис. 8 - График оценки спектральной плотности (2.1) для окна Хэннинга для центрированного случайного процесса
Рис. 9 - График оценки спектральной плотности (2.1) для окна Хэмминга вида 5
Рис. 10 - График оценки спектральной плотности (2.1) для окна Хэмминга вида 5 для центрированного случайного процесса
Рис. 11 - График оценки спектральной плотности (2.1) для окна Хэмминга вида 6
Рис. 12 - График оценки спектральной плотности (2.1) для окна Хэмминга вида 6 для центрированного случайного процесса
Рис. 13 - График оценки спектральной плотности (2.1) для окна Хэмминга вида 7
Рис. 14 - График оценки спектральной плотности (2.1) для окна Хэмминга вида 7 для центрированного случайного процесса
Рис. 15 - График оценки спектральной плотности (2.1) для окна Рисса
Рис. 16 - График оценки спектральной плотности (2.1) для окна Рисса для центрированного случайного процесса