Пусть y=f(x) дифференцируема функция, а ее аргумент х – независимая переменная. Тогда дифференциал dy=f ′(x)dx есть также функция х, можно найти дифференциал этой функции. Дифференциал от дифференциала есть второй дифференциал.
Производную можно рассматривать, как отношение дифференциала соответствующего порядка к соответствующей степени дифференциала независимой переменной.
Дифференциал n-ого порядка, есть дифференциал от дифференциала (n-1)-ого порядка, т.е. производную функции можно рассматривать, как отношение ее дифференциала соответствующего порядка к соответствующей степени дифференциала независимой переменной.39. Исследование условий и построение графиков.
- найти область определения функции
- найти точки пересечения графика с осями координат
- найти интервалы знака постоянства
- исследовать на четность, нечетность
- найти асимптоты графика функции
- найти интервалы монотонности функции
- найти экстремумы функции
- найти интервалы выпуклости и точки перегиба