ИНСТИТУТ БИЗНЕСА, ПРАВА И ИНФОРМАЦИОННЫХ
ТЕХНОЛОГИЙ
КОНТРОЛЬНАЯ РАБОТА
по дисциплине
МАТЕМАТИКА
на тему
Понятие функции. Область определения функции.
Способы задания функции
Выполнил: Мальский Эдуард Александрович,
студент 2 курса
юридического факультета
заочного отделения
группа 25-ЮЗП
Преподаватель:
Оценка:_______________
Подпись преподавателя:_______________
2004 г.
Оглавление
контрольной работы по дисциплине «Математика»
на тему «Понятие функции. Область определения функции.
Способы задания функции»
Введение……………………………………………………...……………………3
1. Функция и её свойства……………………………………………………..4
2. Способы задания функции…………………………………………...........5
3. Виды функций и их свойства……………………………………………...6
Заключение……………………………………………………………………….11
Список использованной литературы…………………………………………...12
Введение.
Функция - одно из основных математических и общенаучных понятий. Оно сыграло и поныне играет большую роль в познании реального мира.
Идея функциональной зависимости восходит к древности. Ее содержание обнаруживается уже в первых математически выраженных соотношениях между величинами, в первых правилах действий над числами. В первых формулах для нахождения площади и объема тех или иных фигур. Так, вавилонские ученые (4-5тыс.лет назад) пусть несознательно, установили, что площадь круга является функцией от его радиуса посредством нахождения грубо приближенной формулы: S=3r2. Примерами табличного задания функции могут служить астрономические таблицы вавилонян, древних греков и индийцев, а примерами словесного задания функции - теорема о постоянстве отношения площадей круга и квадрата на его диаметре или античные определения конических сечений, причем сами эти кривые выступали в качестве геометрических образов соответствующей зависимости.
Раздел 1. Функция и её свойства.
Функция- зависимость переменной у от переменной x, если каждому значению х соответствует единственное значение у.
Переменная х- независимая переменная или аргумент.
Переменная у- зависимая переменная
Значение функции- значение у, соответствующее заданному значению х.
Область определения функции- все значения, которые принимает независимая переменная.
Область значений функции (множество значений)- все значения, которые принимает функция.
Функция является четной- если для любого х из области определения функции выполняется равенство f(x)=f(-x)
Функция является нечетной- если для любого х из области определения функции выполняется равенство f(-x)=-f(x)
Возрастающая функция- если для любых х1и х2, таких, что х1< х2, выполняется неравенство f(х1)<f(х2)
Убывающая функция- если для любых х1и х2, таких, что х1< х2, выполняется неравенство f(х1)>f(х2)
Раздел 2. Способы задания функции.
Чтобы задать функцию, нужно указать способ, с помощью которого для каждого значения аргумента можно найти соответствующее значение функции. Наиболее употребительным является способ задания функции с помощью формулы у=f(x), где f(x)- с переменной х. В таком случае говорят, что функция задана формулой или что функция задана аналитически.
На практике часто используется табличный способ задания функции. При этом способе приводится таблица, указывающая значения функции для имеющихся в таблице значений аргумента. Примерами табличного задания функции являются таблица квадратов, таблица кубов.
Раздел 2. Виды функций и их свойства.
1) Постоянная функция- функция, заданная формулой у=b, где b-некоторое число. Графиком постоянной функции у=b является прямая, параллельная оси абсцисс и проходящая через точку (0;b) на оси ординат
2) Прямая пропорциональность- функция, заданная формулой у=kx, где к¹0. Число kназывается коэффициентом пропорциональности.
Cвойства функции y=kx:
1. Область определения функции- множество всех действительных чисел
2. y=kx - нечетная функция
3. При k>0 функция возрастает, а при k<0 убывает на всей числовой прямой
3)Линейная функция- функция, которая задана формулой y=kx+b, где kиb-действительные числа. Если в частности, k=0, то получаем постоянную функцию y=b; если b=0, то получаем прямую пропорциональность y=kx.
Свойства функции y=kx+b:
1. Область определения- множество всех действительных чисел
2. Функция y=kx+b общего вида, т.е. ни чётна, ни нечётна.
3. При k>0функция возрастает, а при k<0 убывает на всей числовой прямой
Графиком функции является прямая.
4)Обратная пропорциональность- функция, заданная формулой y=k/х, где k¹0 Число k называют коэффициентом обратной пропорциональности.
Свойства функции y=k/x:
1. Область определения- множество всех действительных чисел кроме нуля
2. y=k/x- нечетная функция
3. Если k>0, то функция убывает на промежутке (0;+¥) и на промежутке (-¥;0). Если k<0, то функция возрастает на промежутке (-¥;0) и на промежутке (0;+¥).
Графиком функции является гипербола.
5)Функция y=x2
Свойства функции y=x2:
1. Область определения- вся числовая прямая
2. y=x2- четная функция
3. На промежутке [0;+¥) функция возрастает
4. На промежутке (-¥;0] функция убывает
Графиком функции является парабола.
6)Функция y=x3
Свойства функции y=x3:
1. Область определения- вся числовая прямая
2. y=x3-нечетная функция
3. Функция возрастает на всей числовой прямой
Графиком функции является кубическая парабола
7)Степенная функция с натуральным показателем- функция, заданная формулой y=xn, где n- натуральное число. При n=1 получаем функцию y=x, ее свойства рассмотрены в п.2. При n=2;3 получаем функции y=x2; y=x3. Их свойства рассмотрены выше.
Пусть n- произвольное четное число, большее двух: 4,6,8... В этом случае функция y=xnобладает теми же свойствами, что и функция y=x2. График функции напоминает параболу y=x2, только ветви графика при |х|>1 тем круче идут вверх, чем больше n, а при |х|<1 тем “теснее прижимаются” к оси Х, чем больше n.
Пусть n- произвольное нечетное число, большее трех: 5,7,9... В этом случае функция y=xnобладает теми же свойствами, что и функция y=x3. График функции напоминает кубическую параболу.
8)Степенная функция с целым отрицательным показателем- функция, заданная формулой y=x-n, где n- натуральное число. При n=1 получаем y=1/х, свойства этой функции рассмотрены в п.4.
Пусть n- нечетное число, большее единицы: 3,5,7... В этом случае функция y=x-nобладает в основном теми же свойствами, что и функция y=1/х.
Пусть n- четное число, например n=2.
Свойства функции y=x-2:
1. Функция определена при всех x¹0
2. y=x-2 - четная функция
3. Функция убывает на (0;+¥) и возрастает на (-¥;0).
Теми же свойствами обладают любые функции при четном n, большем двух.
9)Функция y=Öх
Свойства функции y=Öх:
1. Область определения - луч [0;+¥).
2. Функция y=Öх - общего вида
3. Функция возрастает на луче [0;+¥).
10)Функция y=3Öх
Свойства функции y=3Öх:
1. Область определения- вся числовая прямая
2. Функция y=3Öх нечетна.
3. Функция возрастает на всей числовой прямой.
11)Функция y=nÖх
При четном n функция обладает теми же свойствами, что и функция y=Öх. При нечетном n функция y=nÖх обладает теми же свойствами, что и функция y=3Öх.
12)Степенная функция с положительным дробным показателем- функция, заданная формулой y=xr, где r- положительная несократимая дробь.
Свойства функции y=xr:
1. Область определения- луч [0;+¥).
2. Функция общего вида
3. Функция возрастает на [0;+¥).
На рисунке изображен график функции y=x5/2. Он заключен между графиками функций y=x2 и y=x3, заданных на промежутке [0;+¥).Подобный вид имеет любой график функции вида y=xr, где r>1.
На рисунке изображен график функции y=x2/3. Подобный вид имеет график любой степенной функции y=xr , где 0<r<1
13)Степенная функция с отрицательным дробным показателем-функция, заданная формулой y=x-r, где r- положительная несократимая дробь.
Свойства функции y=x-r:
1. Обл. определения -промежуток (0;+¥)
2. Функция общего вида
3. Функция убывает на (0;+¥)
14)Обратная функция
Если функция y=f(x) такова, что для любого ее значения yo уравнениеf(x)=yo имеет относительно х единственный корень, то говорят, что функция fобратима.
Если функция y=f(x) определена и возрастает (убывает) на промежутке Х и областью ее значений является промежуток Y, то у нее существует обратная функция, причем обратная функция определена и возрастает(убывает) на Y.