Заметим, прежде всего, что оба вектора
и отличны от нуля, так как если бы хоть один из них был нулевым, то они были бы коллинеарны. Если вектор коллинеарен одному из данных векторов, то утверждение сводится к теореме из второго раздела.В общем случае перенесем все три вектора в одну точку О (рис. 6). Через конец C вектора
проведем прямые CР и CQ, параллельные векторам и . Тогда , причем векторы и коллинеарны соответственно и . В силу теоремы из второго раздела существуют и определены однозначно такие числа λ и μ, что , . Таким образом, , что и требовалось.Допустим теперь, что существует другая линейная комбинация
, равная , причем, например λ ≠ σ. Тогда , так как иначе мы имели бы две прямые, проходящие через точку C параллельно вектору . Из последнего равенства вытекает, что σ = λ, в противоречие с нашим предположением.Следствие: Необходимым и достаточным условием линейной зависимости трех векторов является их компланарность.
В самом деле, пусть векторы
, , линейно зависимы, тогда один из них есть линейная комбинация двух других. Пусть, например . Приложим векторы , , к одной и той же точке О (рис. 7), так что , , .Предположим сначала, что векторы
, не коллинеарны; тогда несущие их прямые определяют некоторую плоскость. В этой плоскости лежат и векторы и , а значит, и весь параллелограмм, на этих векторах построенный, в частности и его диагональ . Значит все три вектора , , компланарны.Если векторы
и коллинеарны, то коллинеарны как векторы , , так и их сумма - три вектора , , оказываются даже коллинеарными.Если же векторы
, , компланарны, то либо один из них, например , лежит в одной плоскости с двумя другими неколлинеарными векторами (следовательно ; или ), либо все три вектора коллинеарны (следовательно ). Тем самым следствие полностью доказано.Следствие: Если три вектора некомпланарны, то они линейно независимы.
Теорема: Любой вектор
может быть представлен в виде линейной комбинации трех некомпланарных векторов , и (т.е. найдутся такие числа λ, μ, ν, что ). Такое представление единственно.Никакие два из векторов
, и не коллинеарны, иначе все три были бы компланарны. Поэтому, если компланарен с какими-нибудь двумя из данных векторов, то наше утверждение вытекает из предыдущего следствия.В общем случае перенесем все векторы в одну точку О (рис. 8) и проведем через конец D вектора
прямую, параллельную вектору . Она пересечет плоскость ОЕ1Е2 в точке Р. Очевидно, что . Согласно теореме из второго раздела и предыдущему следствию существуют такие числа λ, μ и ν, что и . Таким образом, .Единственность коэффициентов линейной комбинации доказывается так же, как и предыдущем следствии.
Следствие: Любые четыре вектора линейно зависимы
Глава 4. Понятие базиса. Свойства вектора в данном базисе
Определение: Базисом в пространстве называется любая упорядоченная тройка некомпланарных векторов.
Определение: Базисом на плоскости называется любая упорядоченная пара неколлинеарных векторов.
Базис в пространстве позволяет однозначно сопоставить каждому вектору упорядоченную тройку чисел – коэффициенты представления этого вектора в виде линейной комбинации векторов базиса. Наоборот, каждой упорядоченной тройке чисел
при помощи базиса мы сопоставим вектор , если составим линейную комбинацию .Числа
– называются компонентами (или координатами) вектора в данном базисе (записывается ).