Смекни!
smekni.com

Площади многоугольников (стр. 2 из 18)

В своем наиболее важном геометрическом произведении «Метрика» Герон излагает доказательство примененной выше формулы:

,

где

‑ стороны,
‑ полупериметр треугольника.

Эта формула носит название «формулы Герона». На самом деле она была установлена еще в 3 в. до н. э. величайшим математиком древности Архимедом.

Практические правила Герона для вычисления площадей применялись греческими, римскими и средневековыми землемерами и техниками.

1.2 Различные подходы к изучению понятий «площадь», «многоугольник», «площадь многоугольника»

1.2.1 Понятие о площади. Свойства площади

Обычно говорят, что площадь

фигуры
есть число, показывающее, из скольких единиц площади составляется фигура. Однако это не определение, а только описание того, что такое площадь. Легко понять, что прямоугольник со сторонами 3 и 5 см «составляется» из 15 квадратных сантиметров ( его легко разрезать на 15 квадратов со стороной 1 см; рис. 1.3,а)

Но сколько подобных квадратов нужно, чтобы «составить» круг радиуса 2 см (рис. 1.3, б), совершенно неясно.


Строгое математическое определение площади можно получить с помощью палетки – прозрачной пластинки с нанесенной на нее сеткой из равных квадратов. Представим, что такая палетка лежит на плоскости. Иначе говоря, плоскость разбита на квадраты со стороной, равной 1. Если фигура

полностью помещается в фигуре, составленной, например, из81 квадрата палетки, и содержит фигуру из 43 квадратов (рис. 1.4), то
.

Рис. 1.4

Для большей точности измерения можно каждый квадрат палетки разбить на сто квадратов (стороны которых в 10 раз меньше, чем у квадратов первой палетки, а площадь равна 1/100). Новая, более мелкая палетка даст и более тесные границы, в которых заключена площадь фигуры

, скажем,
. Если каждый квадрат второй палетки снова разбить на 100 квадратов, точность измерения ещё увеличится – например, получатся границы
. Так, используя набор палеток со всё более мелкой сеткой, мы будем приближаться к пределу – площади
фигуры
.

Но здесь есть одна тонкость. Вначале мы получили отрезок

, где
,
, в котором содержится искомое число
. Затем этот отрезок уменьшили до
, где
,
. Потом уменьшили ещё – до
, где
,
, и т. д. Но пересечение системы вложенных отрезков

числовой прямой есть либо одна точка (в том случае, когда имеется только одно число

, принадлежащее все рассматриваемым отрезкам (рис. 1.5), фигуру
называют квадрируемой (по Жордану), а число
- площадью фигуры
.

Рис. 1.5

Второй случай, когда пересечение всех отрезков представляет собой отрезок, а не одну точку, на первый взгляд кажется просто невозможным. Ведь всякая фигура имеет какую-нибудь площадь S(F). Число S(F) и должно быть единственной общей точкой рассматриваемых отрезков. Но на самом деле это не так. Следующий пример подтверждает это.

Возьмём квадрат Q1 со стороной 1. Выбросим из него крестообразную фигуру площадью

, как показано на рис. 1.6.

рис. 1.6

Остаётся фигура Q2 из четырёх равных квадратов, примыкающих к вершинам Q1. (Сторона каждого из них составляет

). Теперь в каждом из квадратов фигуры Q2 вновь построим, а затем удалим крестообразную фигуру. Её размер определим из условия , что сумма площадей четырёх таких фигур была равна
. Получим фигуру Q3 из 16 квадратов. Из каждого из них опять выбросим крестообразную фигуру так, чтобы сумма площадей всех 16 таких «крестов» была равна
. Получим фигуру Q4 из 64 квадратов и т. д.

Обозначим через F пересечение всех фигур Q1, Q2,Q3,Q4, … Другими словами, F получается, если из квадрата Q1 выбросить по очереди все «кресты». Общая площадь фигур, выбрасываемых из Q1, равна

. Значит, на долю множества F остаётся площадь
. Это кажется невероятным: ясно, что в фигуре F нет ни одного, пусть самого маленького, целого квадратика, и тем не менее она имеет площадь, равную
.

Попробуем теперь измерить площадь фигуры F по Жордану (т. е. с помощью палеток). Какую бы мелкую палетку мы не взяли, площадь фигуры, составленной из квадратов палетки и включающей в себя F, равна нулю (поскольку в F нет ни одного целого квадрата. Таким образом, каждый из получающихся отрезков

(а потому и пересечение всех этих отрезков) содержит отрезок

, т. е. их пересечение не состоит из одной точки. Значит, фигура F неквадрируема.

Способ измерения площадей с помощью палеток был предложен в XIX веке французским математиком Камилем Жорданом. Другой французский математик – Анри Лебег предложил более общее определение площади. Построенная выше фигура Fнеквадрируема по Жордану, но имеет площадь (равную

), по определению Лебега, или, как говорят, измерима по Лебегу. Если же фигура квадрируема по Жордану, то она обязательно измерима и по Лебегу (и имеет ту же площадь).

А какие плоские фигуры квадрируемы? Прежде всего многоугольники. Для других фигур применяют следующую теорему:

Плоская фигура F (рис. 1.7) в том и только в том случае квадрируема, если для любого положительного числа

найдутся два таких многоугольника M и N, что М содержится в F, а N содержит F, и при этом

.

Рис 1.7

Другими словами, квадрируемы фигуры, которые можно сколь угодно точно приблизить многоугольниками. Например, площадь круга находят как предел площади вписанного в него или описанного около него правильного n-угольника при

.

Поскольку обе площади имеют общий предел, их разность стремится к нулю, значит, круг – квадрируемая фигура. Вообще, любая плоская выпуклая фигура квадрируема. Квадрируема и криволинейная трапеция под графиком непрерывной функции

, заданной на отрезке
.