Смекни!
smekni.com

Площади многоугольников (стр. 3 из 18)

Кроме приведённого выше определения площади с помощью палеток имеется ещё одно, аксиоматическое определение. Прежде чем его сформулировать рассмотрим некоторые свойства площади (будем иметь в виду только площадь по Жордану).

Обозначим через Q множество всех квадрируемых плоских фигур, тогда площадь S(F) есть числовая функция, определённая на данном множестве. Перечислим свойства, которыми она обладает.

А. Неотрицательность. Площадь любой квадрируемой фигуры Fнеотрицательна:

. Не исключается нулевое значение площади, поскольку, например, любой отрезок представляет собой квадрируемую фигуру нулевой площади.

В. Аддитивность. Пусть F1 и F2 – две квадрируемые фигуры, у которых нет общих внутренних точек. Обозначим через F объединение этих фигур. Тогда фигура F квадрируема и справедливо равенство

. То же имеет место при объединении не двух, а большего числа фигур, попарно не имеющих общих внутренних точек.

С. Инвариантность. Если две квадрируемые фигуры F1 и F2 равны, т. е. одна получается из другой с помощью движения, то площади таких фигур равны:

. Иначе говоря, площадь не изменяется при движениях.

D. Нормируемость. При определении площади фигуры задаётся некоторая единица площади – квадрат К, сторона которого равна динице длины:

.

Очевидно, что площадь

, определяемая с помощью палеток, действительно удовлетворяет свойствам А и D. Проверить два других свойства сложнее. Например, если фигура F1 переходит в F2 при повороте, то эти две фигуры будут по-разному расположены относительно палеток и доказательство равенства их площадей (свойство С) требует некоторых усилий. Тем не менее можно утверждать:

На множестве Q всех квадрируемых фигур существует одна и только одна функция, которая обладает свойствами A, B, C, D.

То есть всякая функция на множестве Q, удовлетворяющая всем четырём свойствам, совпадает с

.

Стало быть, свойства A, B, C, D можно принять за аксиомы площади, т. е. определить площадь как функцию на множестве квадрируемых фигур Q, удовлетворяющую данным аксиомам. Это и есть аксиоматическое определение площади. Все остальные её свойства можно вывести из перечисленных аксиом. Например, формулы для вычисления площадей многоугольников вытекают именно из аксиом A, B, C, D точно так же, как формулы площади круга, эллипса и других фигур.

Заметим, что и в геометрии Лобачевского, и в сферической геометрии площадь определяется теми же аксиомами. Однако палетками пользоваться уже не приходится; за эталон площади принимают не квадрат, а иную фигуру – квадратов на плоскости Лобачевского и сфере просто нет. Интересно, что в обеих геометриях площадь многоугольника пропорциональна разности между суммой его углов и суммой углов плоского многоугольника с тем же числом сторон.

1.2.2 Понятие о многоугольнике

Термин «многоугольник» понимается в математике и, в частности, в школьном курсе математики двояко. Во-первых, многоугольник как линия. В этом случае многоугольник – это простая (т. е. без самопересечения) замкнутая ломаная, лежащая в некоторой плоскости. И, во-вторых, многоугольник, как часть плоскости, ограниченная простой замкнутой ломанной. Эти две трактовки понятия «многоугольник» могут быть использованы самостоятельно в зависимости от характера рассматриваемой задачи. В логическом плане второе понимание термина «многоугольник2 связано с первой теоремой Жордана. В теореме Жордана речь идёт о многоугольнике как о простой замкнутой ломаной.

Каждый многоугольник разбивает все точки плоскости, содержащей этот многоугольник, не принадлежащие самому многоугольнику, на два класса (множества) следующим образом. Любые две точки, принадлежащие одному классу, можно соединить ломаной, не пересекающей многоугольник. И каковы бы ни были две точки, принадлежащие разным классам, - этого сделать нельзя. Один из классов содержит прямые, не пересекающие многоугольник. Множество точек этого класса называют внешней областью многоугольника. Любая прямая, содержащая точки другого класса, пересекает многоугольник и содержит также точки из внешней области многоугольника. Множество точек этого класса называют внутренней областью многоугольника.

Внутренняя область многоугольника вместе с самим многоугольником образует понятие многоугольника во втором смысле (как части плоскости, ограниченной простой замкнутой ломаной).

1.2.3 Понятие о площади многоугольника. Дескриптивное определение

В вопросе о площади многоугольник понимается как часть плоскости, ограниченная простой замкнутой ломаной. В этом смысле понятие «многоугольник» используется в дальнейшем в изложении школьного курса математики, а площадь многоугольника определяется с помощью указания её свойств:

1) численное значение площади любого многоугольника всегда положительно;

2) площади равных многоугольников, т. е. многоугольников, которые можно совместить с помощью движения, одинаковы;

3) площадь многоугольника, полученного объединением двух многоугольников, не имеющих общих внутренних точек, будем называть не перекрывающимися);

4) площадь квадрата со стороной единичной длины равна единице.

В различных учебниках по геометрии для общеобразовательных учреждений определения площади несколько отличаются друг от друга, но суть определений совпадает с указанным выше.

Таким образом, площадь многоугольников можно трактовать как функцию

, заданную на множестве
всех многоугольников, принимающую числовые значения и обладающую следующими свойствами (аксиомами площади):

1) неотрицательность площади;

2) аддитивность площади;

3) инвариантность площади;

4) нормированность площади.

Это определение по своему характеру сродни, например, определению арифметического корня

(
): b – есть неотрицательное число, n-я степень которого равна а.

Ведь и в этом случае арифметический корень определяется указанием его свойств. Для корректного определения арифметического корня надо доказать, что такое число b, во-первых, существует и, во-вторых, единственно. Первое следует из того, что множество значений функции

и
) есть
.

Второе следует из строго монотонного возрастания рассматриваемой функции.

Для корректного определения площади многоугольников – функции

- требуется доказать, что такая функция существует и единственна.

Определения указанного типа носят название дескриптивных (буквально, описательных, от английского слова descriptive – описательный).

Дескриптивные определения отличаются от определений конструктивных (буквально, построительных, от лат. слова construction – построение).

Примером конструктивного определения является, например, определение степени с натуральным показателем:

(если произведение чисел ранее определено).

Поборник ознакомления школьников с понятием дескриптивного определения, видный отечественный математик и педагог Я. С. Дубнов, отмечал, что из уравнения, мы имеем дело с дескриптивным определением этого числа, и что концепция дескриптивного определения, как содержащего формулировку некоей задачи, вполне доступна пониманию школьника, стоит только фиксировать его внимание на дескриптивном характере уже знакомых определений. Если этого не делают, то, вероятно, потому, что недооценивают образовательное значение идеи дескриптивного определения, которое одновременно служит инструментом исследования и преддверием к пониманию аксиоматического метода.

Это высказывание более чем сорокалетней давности актуально и сегодня. В школьных учебниках, где фактически программа реализации дескриптивного определения площади многоугольника выполнена полностью (доказаны существование и единственность функции

) не только ничего не говорится о специфике дескриптивного определения, но и сам термин «дескриптивное определение» не используется. Здесь проявляется многовековая традиция, состоящая в следующем: практическое знакомство с площадями делает это понятие чрезвычайно надёжным в наших глазах. Площадь представляется нам физической реальностью, такой же несомненной, как окружающие нас предметы. Многим же сам вопрос (об определении площади) покажется искусственным: они скажут, что площадь – первичное понятие, не подлежащее определению.

Взгляд на площадь как на первичное понятие сложился ещё в древности. До недавнего времени этого взгляда придерживались и математики. На протяжении многих столетий они видели задачу в вычислении площадей; им не приходило в голову, что «площадь» нуждается в специальном определении.