Абсолютно непрерывные функции. Связь между абсолютно непрерывными функциями и интегралом Лебега (КФЭ 394).
Абсолютно непрерывной называется такая функция ¦, заданная на отрезке [a,b], что какова бы ни была система попарно непересекающихся интервалов (ak,bk) с суммой длин меньшей d, сумма модулей разностей значений функции ¦ в концах интервалов меньше чем e.
Утв. Всякая абсолютно непрерывная ф-я имеет ограниченное изменение.
Теорема. Функция
, представляющая собой неопределенный интеграл суммируемой ф-и, абсолютно непрерывна.Метрическое пр-во. Определение и примеры. Полнота. Теорема о вложенных шарах в метрическом пр-ве.
Полугруппой наз. множество объектов, если для его элементов определена замкнутая ассоциативная бинарная операция.
Группой наз. множество объектов, если для его элементов определена замкнутая ассоциативная бинарная операция и существует единица.
Кольцо - множество объектов с двумя бинарными операциями, являющееся группой по одной из операций, и полугруппой по второй операции, причем для элементов кольца справедлив закон ассоциативности и дистрибутивности.
Поле – кольцо с единицей, содержащее элементы отличные от нуля, для каждого из которых определен обратный элемент по “умножению” (являющееся группой по умножению).
Линейным векторным пр-вом над кольцом наз. множество объектов называемых векторами с определенными операциями векторного сложения и умножения вектора на скаляр, такими, что это множество является группой по векторному сложению и справедливы законы ассоциативности и дистрибутивности для умножения на скаляр.
Выпуклым подмножеством Е векторного пр-ва Х называется такое его подмножество, что для любых его двух элементов х и у и числа q из [0, 1] элемент qх+(1-q)у принадлежит Е.
Уравновешенным подмножеством Е векторного пр-ва Х называется такое его подмножество, что для любого х из Е и числа q, по модулю не превосходящего единицы элемент qх принадлежит Е.
Абсолютно выпуклым подмножеством Е векторного пр-ва Х называется такое его подмножество, что для любых его двух элементов х и у и числа любых двух чисел ab : 1³|a|+|b| элемент aх+bу принадлежит Е.
Поглощающим подмножеством Е векторного пр-ва Х называется такое его подмножество, что для любого х из Х существует число a большее нуля, что для все чисел b по модулю не меньших a найдется элемент у из Е, что х равен bу.
Калибровочной функцией векторного пр-ва Х называется такая функция р(х): Х®R, что для нее выполнены следующие условия:
Для любого скаляра из К выполнена аксиома уравновешенности: "aÎК р(aх)= a×р(х).
Выполнено нер-во треугольника: р(х)+ р(у)³ р(х+у).
Полунормой векторного пр-ва Х называется такая функция р(х): Х®R, что для нее выполнены следующие условия:
Для любого скаляра из К выполнена аксиома уравновешенности: "aÎК ||aх||= |a|×||х||.
Выполнено нер-во треугольника: р(х)+ р(у)³ р(х+у).
Утв. Пусть р(a) – неотр. калибровочная ф-я. Тогда мн-во Еl={х: р(х)<l}выпукло и поглощающее, р(х) - полунорма.
Нормированным называется такое векторное пр-во Х над полем К, если определена функция нормы ||×|| из Х в R, такая, что для нее справедливы следующие условия:
Норма неотрицательна и равна нулю лишь в том случае, когда сам элемент равен нулю: ||х||³0, ||х||=0 Û х=0.
Для любого скаляра из К выполнена аксиома уравновешенности: "aÎК ||aх||= |a|×||х||.
Выполнено нер-во треугольника: ||х||+ ||у||³||х+у||.
Метрическим пр-вом называется мн-во Х на котором задана бинарная функция r(х,у), для которой справедливы следующие условия:
r(х,у)=0 титт х=у. r(х,у)= r(у,х). r(х,z)£r(х,у) +r(у,z).
Полным называется такое метрическое пр-во, в котором любая фундаментальная посл-ть сх-ся.
Топологическим пр-вом называется такое множество Х в котором определена система его подмножеств t, называемая топологией, такая, что для нее справедливы условия:
Мн-во Х и пусто мн-во принадлежит t. Объединение и пересечение мн-в из t лежит в t.
Базой топологии пр-ва Х называется система открытых мн-в W из Х, таких, что всякое открытое мн-во из Х может быть представлено в виде конечной или бесконечной суммы мн-в из W.
Хаусдорфова топология (????).
Теорема. Пусть Х – векторное топологическое пр-во, тогда существует база окрестностей нуля, состоящая из замкнутых поглощающих мн-в.
Порождающая система полунорм (???).
Теорема. Локально выпуклое пр-во Х метризуемо титт, когда топология хаусдорфова и существует счетный набор порождающих полунорм.
Банаховы пр-ва. Теорема о вложенных шарах в банаховом пр-ве (КФЭ 81).
Банаховым пр-вом называется полное нормированное пр-во.
Теорема. Для того чтобы метрическое пр-во Х было полным необх. и дост., чтобы в нем любая посл-ть вложенных друг в друга замкнутых шаров, радиусы к-рых не стремятся к нулю, имела непустое пересечение.
Теорема Бера. Принцип сжимающих отображений (КФЭ 83).
Сжимающим называется такое отображение ¦ полного метрического пр-ва ¦: Х®Х, что существует число r<1, такое что rr (х,у)³r(¦(х),¦(у)).
Теорема. Для сжимающего отображения ¦ существует единственная неподвижная точка ¦(х)=х.
Теорема Бера. Полное метрическое пр-во Х не может быть представлено в виде объединения счетного числа нигде не плотных мн-в.
Теорема о пополнении (КГТ 12).
Пополнением метрического пр-ва Х называется метрическое пр-во У, такое, что выполнены следующие усл-я:
Y полно. Х лежит в Y. Х плотно в Y, т.е. каждая точка из Y является предельной для Х.
Теорема. Каждое метрическое пр-во Х допускает пополнение Y. Любые два пополнения пр-ва Х изометричны, причем изометрия, связывающая их, оставляет на месте точки Х.
Сепарабельность, компактность, критерий Хаусдорфа.
Сепарабельным называется такое топологическое пр-во Х, что в нем существует счетное всюду плотное мн-во Е, то есть для любого элемента из Х и для любой его окрестности найдется элемент из Е, принадлежащий этой окрестности.
Компактным подмножеством топологического пр-ва Х называется такое его подмножество А, что из любого покрытия мн-ва А системой открытых мн-в можно выделить конечное подпокрытие.
Предкомпактом называется множество, замыкание к-го компакт.
e-сеть для мн-ва В является такое мн-во А, что для любого элемента из В найдется элемент из А, отстоящий от него не далее, чем на e.
Критерий Хаусдорфа. Пусть Х – полное метрическое пр-во и А подмножество в Х. Мн-во А предкомпактно титт, когда для каждого e>0 мн-во А обладает конечной e-сетью.
Сл-е. В конечномерном нормированном пр-ве предкомпактность равносильна ограниченности.
Непрерывные функции на метрических компактах. Эквивалентность норм в Rn.
Теорема. Пусть Х – компактное метрическое пр-во и ¦ - непрерывная на нем числовая ф-я. Тогда ¦ ограниченна на Х и достигает на Х верхней и нижней граней.
Эквивалентными в лин-ом пр-ве Х называются такие две нормы ||×||1 и ||×||2 , что существуют положительные числа a и b для которых справедливо нер-во a||x||1£||x||2£b||x||1 при всех x из X.
Теорема. В конечномерном лин. пр-ве Х любые две нормы эквивалентны.
Теорема Асколи-Арцела (КГ 75).
Теорема Асколи-Арцела. Пусть С(Х) –нормированное пр-во вещественных непрерывных ф-й на метрическом пр-ве Х с нормой ||¦||=max|¦(x)|. Для того чтобы подмножество А мн-ва С(Х) было предкомпактным необх. и дост. Чтобы были оно удовлетворяло следующим условиям:
Мн-во А равномерно ограниченно т.е. для любой функции ¦ существует единое для всех число С, такое что модуль ¦ не превосходит это число: $С "¦|¦(х)|£С.
Мн-во А равностепенно непрерывно т.е. для любой функции ¦ и для любых двух точек х и у найдутся такие числа e и d, что как только расстояние между точками меньше, чем d разность аргументов функции ¦ меньше e: "¦"e>0 $d>0, справедливо |¦(х)-¦(у)|<e , если r(х,у)< d.
Критерий предкомпактности единичного шара (КГТ 74).
Теорема. Пусть Х – лин-ое нормированное бесконечномерное пр-во, тогда единичный шар B={x: ||x||<1}не является предкомпактным мн-вом.
Евклидовы пр-ва. Неравенство Коши-Буняковского.
Евклидовым называется такое лин-ое пр-во Х если для него справедливы следующие условия:
Определена операция ( , ): Х´Х®С.
(х,х)³0. (х,х)=0 Ûх=0.
.(aх+bу,z)= a(х,z)+b(y,z).
Утв. Норму в Евклидовом пр-ве можно ввести следующим образом:
.Утв. Метрику в Евклидовом пр-ве можно ввести следующим образом:r(х,у)=||x-y||.
Теорема. Для любых двух элементов х и у из Х справедливо нер-во Коши-Буняковского:
|(x,y)|£||x||×||y||.
Предгильбертовым называется такое лин-ое пр-во Х если для него справедливы следующие условия:
Определена операция ( , ): Х´Х®С.
(х,х)³0.
.(aх+bу,z)= a(х,z)+b(y,z).
Гильбертовым пространством называется полное бесконечномерное Евклидово пр-во.
Утв. Определение Гильбертова пр-ва эквивалентно предгильбертовости пр-ва с добавлением условия (х,х)>0 при x отличных от нуля.
Теорема о существовании и единственности элемента наилучшего приближения в гильбертовых пр-вах. Теорема о разложении в прямую сумму.
Ортонормированные системы. Процесс ортогонализации.
Опр. В Евклидовом пр-ве косинус между двумя векторами х и у можно определить как
.Ортогональной в Евклидовом пр-ве Х называется такая система векторов {xa}, что при различных a и b (хa,хb)=0.
Ортогональным базисом в Евклидовом пр-ве Х называется такая ортогональная система , что ее лин-ая оболочка совпадает с Х.
Ортонормированной системой в Евклидовом пр-ве Х (о.н.с.) называется такая система векторов {xa}, что при различных a и b (хa,хb)=0 и для всех векторов xa ||xa ||=1 .