Математическое моделирование универсальный и эффективный инструмент познания внутренних закономерностей, присущих явлениям и процессам. Математическое моделирование позволяет изучить количественные взаимосвязи и взаимозависимости моделируемой системы и совершенствовать ее дальнейшее развитие и функционирование. Но для того, чтобы моделирование стало действенным инструментом познания, необходимо правильно построить математическую модель, адекватную изучаемой системе. Математическая модель представляет собой систему математических формул, неравенств или уравнений, с большей или меньшей точностью описывающих явления и процессы, происходящие в оригинале.
Поскольку одни и те же символы и обозначения позволяют описать самые различные процессы, математическая модель широко применяется в науке и практике. Кроме того, она позволяет абстрактно (в общем виде) представить или описать большое количество сложных процессов и явлений. Экономические процессы и явления исследуются с помощью экономико-математических моделей, введенных в практику экономических исследований в нашей стране академиком В.С. Немчиновым.
Сущность экономико-математической модели в сжатой и емкой форме выразил В.С. Немчинов: "Экономико-экономическая модель представляет собой концентрированное выражение общих взаимосвязей и закономерностей экономического явления в математической форме"[1].
Среди различных систем наиболее сложными являются экономические, правильно описать которые можно лишь в том случае, если достаточно подробно, хорошо познаны количественные связи между отдельными факторами и степень их влияния друг на друга и на конечные результаты производств. Поэтому модель должна с большей или меньшей точностью отражать реальные процессы и взаимосвязи экономической системы и ограничения, накладываемые на нее внешними условиями. Модель должна опираться на достоверную информацию. Однако не одна, даже сложная и большая модель не может до мельчайших подробностей отразить все стороны моделируемой системы. Да в этом и нет особой надобности. Поэтому в процессе построения модели не следует стремиться к описанию многочисленных связей, присущих моделируемой системе, поскольку не всегда точно известно количественная природа всех связей и зависимостей исследуемой системы; кроме того, это может так усложнить и перегрузить модель, что решения с ее помощью конкретной экономической задачи окажется невозможной. Поэтому математическое моделирование предполагает абстрагирование, отвлечение от несущественных сторон моделируемого объекта и, следовательно, описание наиболее характерных закономерных черт его. Однако и абстрагирование имеет свои пределы, за которыми модель становится слишком условной, что не позволяет получить практически приемлемое решение. Следовательно, в процессе моделирования необходимо определить пределы абстрагирования. При этом надо помнить, что любая экономико-математическая модель представляет собой диалектическое единство количественной и качественной характеристик экономического явления. Отсутствие такого единства или нарушение его в модели может привести к нежелательным, а следовательно, и к практически непригодным решениям.
Таким образом, искусство моделирования состоит в том, чтобы, глубоко изучив и поняв качественную природу явления, суметь отразить ее в математической количественной форме, сохранив основные черты явления и отбросив несущественное.
Для изучения экономических процессов, происходящих в народном хозяйстве страны используются и другие методы, например метод научных экспериментов. Однако, как показывает опыт, дешевле и быстрее разработка экономико-математической модели. Решение ее на ЭВМ не зависит от конкретных условий хозяйства, его территориальной удаленности, времени года и других внешних факторов, и решение возможно до тех пор, пока не будут получены объективные, обоснованные практические результаты. Следует отметить, что возможно применение уже готовых типовых (базовых) моделей, экспериментально проверенных и дающих высокий эффект. Такими моделями, как правило, являются модели линейного программирования. Когда поставленная экономическая проблема не может быть решена с помощью ни одной из известных моделей, создается оригинальная модель, которая в дальнейшем проходит все необходимые стадии, вплоть до практической апробации, и только после этого рекомендуется в производство[2].
Процесс экономико-математического моделирования можно условно разделить на ряд отдельных, но взаимосвязанных этапов:
постановка задачи и обоснование критерия оптимальности;
разработка структурной математической модели;
сбор и обработка исходной информации;
построение развернутой матрицы задачи (числовой модели);
решение задачи на ЭВМ, анализ и корректировка его.
Рассмотрим более подробно сущность каждого из этих этапов.
Постановка задачи и обоснование критерия оптимальности. На этом этапе требуется, прежде всего, четкая формулировка задач, раскрывающая известные и не известные параметры и цель задачи. Постановка задачи должна свидетельствовать о хорошем знании объекта моделирования.
Критерий оптимальности должен, как правило, соответствовать основной цели экономической системы. Однако путем формулировки одного критерия оптимальности это не всегда возможно. Поэтому в задачу вводят дополнительные ограничения или решают ее последовательно на несколько критериев оптимальности, а затем с помощью сравнительного анализа полученных вариантов решений выбирают тот, который наилучшим образом отвечает поставленным целям.
Как отмечалось, правильная постановка задачи невозможна без предварительного глубокого количественного и качественного анализа моделируемой системы. Такой анализ позволяет точнее выявить условия, в которых функционирует система, и определить степень влияния одного или нескольких существенных факторов на экономические результаты. Анализировать экономические явления и процессы не просто, а в данном случае ставится задача довести до численных характеристик анализируемые явления и процессы. Только при соблюдении этих условий возможно правильно поставить задачу и получить практические результаты.
Разработка структурной математической модели. На этом этапе выбирается базовая модель и в соответствии с поставкой задачи с использованием определенных символов и обозначений записывается математическая модель. В линейном программировании разработаны две базовые модели - модель общей задачи линейного программирования, называемая моделью симплексного метода, и модель транспортной задачи, или модель распределительного метода. На основе этих базовых моделей в зависимости от конкретной постановки задачи записывается математическая модель. Отражающая структуру будущей задачи, ее композицию - структурная модель. Структурная модель позволяет в ёмкой и сжатой форме отразить характер поставленной задачи и условия, включенные в нее. При разработке структурной модели целесообразно использовать унифицированные символику и порядок описания модели.
Сбор и обработка исходной информации. Процесс сбора и обработки исходной информации более сложный и трудоемкий. На этом этапе определяются характер и объем необходимой информации, источники ее получения и способы обработки.
В значительной степени получаемый результат зависит от качества исходной информации. Если даже одна - две цифры, включенные в задачу, будут неверными, то весь результат решения окажется неприемлемым.
При разработке экономико-математических задач самая трудоемкая работа - расчет технико-экономических коэффициентов затрат и выхода продукции. Если на решение задачи на ЭВМ затрачивается 20-30 мин, то на разработку информации - один - два месяца напряженной работы.
Построение числовой матрицы задачи (числовой модели). Матрица представляет собой запись в табличной форме, в которой условия задачи отражены в виде линейных соотношений. Матрица состоит из столбцов и строк. По столбцам матрицы располагаются, как правило, переменные величины, т.е. искомые значения отраслей сельскохозяйственного производства, по строкам - условия задачи, которые называются ограничениями. Технико-экономические коэффициенты матрицы могут означать либо норму затрат, либо норму выхода продукции в расчете на единицу измерения переменной величины. Но каждая матрица содержит особый столбец, в котором отражаются тип и объем ограничений, и особую строку, в которой располагается целевая функция задачи.
Таким образом, развернутая матрица представляет собой задачу, подготовленную к решению на ЭВМ. Обычно матрица строится в соответствии с принятой на вычислительном центре программой расчета. Матрица этой задачи имеет следующий вид:
Ограничения | Единица измерения | Овес | Ячмень | Тип и объем ограничений |
1. По использованию пашни 2. По использованию трудовых ресурсов | га чел. - дней | 1 6 | 1 8 | < 300 < 2000 |
Целевая функция - валовая продукция | руб. | 200 | 250 | max |
В таком виде матрица передается для решения на ЭВМ в вычислительный центр.