Смекни!
smekni.com

Исследование математических операций (стр. 1 из 3)

Министерствообразования и науки Украины

Днепропетровский Национальный Университет

Факультет электроники, телекоммуникаций и компьютерных систем

Кафедра АСОИ

Расчётная задача №3

«Исследование математических операций»

Выполнил:

Ст. группы РС-05

Проверил:

Доцент кафедры АСОИ

Саликов В.А.

г. Днепропетровск

2007г.


Условие задачи

Решение задачи

r = R1+R2+…Ri;

min

= min(r);

Ri=1,2,….

Полученное на 1 этапе оптимальное базисное решение используется в качестве начального решения исходной задачи.

Основные этапы реализации двухэтапного метода (как и других методов искусственного базиса) следующие:

1. Строится искусственный базис. Находится начальное недопустимое решение. Выполняется переход от начального недопустимого решения к неко­торому допустимому решению. Этот переход реализуется путем минимизации (сведения к нулю) искусственной целевой функции, представляющей собой сумму искусственных переменных.

2. Выполняется переход от начального допустимого решения к оптималь­ному решению.

Все ограничения требуется преобразовать в равенства. Для этого в ограничения «больше или равно» (первое и второе) необходимо ввести избыточ­ные переменные. В ограничение «меньше или равно» (четвертое) добавляется остаточная переменная. В огра­ничение «равно» не требуется вводить никаких дополнительных переменных. Кроме того, требуется перейти к целевой функции, подлежащей максимизации. Для этого целевая функция Е умножается на -1. Математическая модель задачи в стандартной форме имеет следующий вид:

Первый этап (поиск допустимого решения)

1. Во все ограничения, где нет базисных переменных, вводятся искусственные базисные переменные.

Примечание. Искусственная целевая функция всегда (в любой задаче) подлежит минимиза­ции.

2 Искусственная целевая функция выражается через небазисные пере­менные. Для этого сначала требуется выразить искусственные переменные че­рез небазисные:

3 Для приведения всей задачи к стандартной форме выполняется переход к искусственной целевой функции, подлежащей максимизации. Для этого она умножается на -1:

4.Определяется начальное решение. Все исходные, а также избыточные переменные задачи являются небазисными, т.е. принимаются равными нулю. Искусственные, а также остаточные переменные образуют на­чальный базис: они равны правым частям ограничений.

5 Составляется исходная симплекс-таблица. Она отличается от симплекс-таблицы, используемой для обычного симплекс-метода только тем, что в нее добавляется строка искусственной целевой функции. В этой строке указываются коэффициенты искусственной целевой функции (приведенной к стан­дартной форме, т.е. подлежащей максимизации) с обратными знаками, как и для обычной целевой функции.

6.Выполняется переход от начального недопустимого решения, содержащегося в исходной симплекс-таблице, к некоторому допустимому решению. Для этого с помощью обычных процедур симплекс-метода вы­полняется минимизация искусственной целевой функции. При этом переменные, включаемые в базис, выбираются по строке искусственной целевой функции. Все остальные действия выполняются точно так же, как в обычном симплекс-методе. В результате минимизации искусствен­ная целевая функция - должна принять нулевое значение. Все искусственные переменные при этом также становятся равными нулю (исключаются из базиса), так как искусственная целевая функция представляет собой их сумму.

Двухэтапный метод

1 шаг


2 шаг

, где

В ходе преобразований имеем:

Строим симплекс таблицу:

Итерация 0

Базис

Решение Оценка
15 15 -1 0 -1 -1 -1 0 0 0 0 0 0 34
-2 1 0 1 0 0 0 0 0 0 0 0 0 6 6
1 0 0 0 0 0 0 1 0 0 0 0 0 6 -
0 1 0 0 0 0 0 0 1 0 0 0 0 7 7
1 7 -1 0 0 0 0 0 0 1 0 0 0 7 1
2 5 0 0 -1 0 0 0 0 0 1 0 0 10 2
5 2 0 0 0 -1 0 0 0 0 0 1 0 10 5
7 1 0 0 0 0 -1 0 0 0 0 0 1 7 7

- ведущий столбец