Смекни!
smekni.com

Конечно-разностный метод решения краевых задач для обыкновенных дифференциальных уравнений (стр. 4 из 8)

В простейших случаях используют метод простых итераций, вычисляя последовательно значения функции у = f(x), изменяя значения х, чтобы у→ 0 и его модификацию – "метод вилки", изменяя величину х так, чтобыесли f(x1)> 0, то f(x2)< 0и сужая интервал [х1; х2].

1.2.2. Интерполяция функций.

Интерполяция, интерполирование – в вычислительной математике способ нахождения промежуточных значений величины по имеющемуся дискретному набору известных значений.

В практике приходится оперировать наборами значений, полученных экспериментальным путём или методом случайной выборки. Как правило, на основании этих наборов требуется построить функцию, на которую могли бы с высокой точностью попадать другие получаемые значения. Такая задача называется аппроксимацией кривой. Интерполяцией называют такую разновидность аппроксимации, при которой кривая построенной функции проходит точно через имеющиеся точки данных.

Существует также близкая к интерполяции задача, которая заключается в аппроксимации какой-либо сложной функции другой, более простой функцией. Если некоторая функция слишком сложна для производительных вычислений, можно попытаться вычислить её значение в нескольких точках, а по ним построить, то есть интерполировать, более простую функцию. Разумеется, использование упрощенной функции не позволяет получить такие же точные результаты, какие давала бы первоначальная функция. Но в некоторых классах задач достигнутый выигрыш в простоте и скорости вычислений может перевесить получаемую погрешность в результатах.

На практике чаще всего применяют интерполяцию многочленами. Это связано прежде всего с тем, что многочлены легко вычислять, легко аналитически находить их производные.

Линейная интерполяция – интерполяция алгебраическим двучленом Р1(x) = ax + b функции f(x), заданной в двух точках x0 и x1 отрезка [a, b].

В случае, если заданы значения в нескольких точках, функция заменяется кусочно-линейной функцией.

Интерполяционная формула Ньютона применяется, если узлы интерполяции равноотстоящие и упорядочены по величине, так что xi + 1 − xi = h = const, то есть xi = x0 + ih. Тогда интерполяционный многочлен можно записать в форме Ньютона.

Интерполяционные полиномы в форме Ньютона удобно использовать, если точка интерполирования находится вблизи начала (прямая формула Ньютона) или конца таблицы (обратная формула Ньютона).

Короткая форма интерполяционной формулы Ньютона

В случае равноудаленных центров интерполяции, находящихся на единичном расстоянии друг от друга, справедлива формула:

где

– обобщенные на область действительных чисел биномиальные коэффициенты.

Прямая интерполяционная формула Ньютона

где

а выражения вида Δkyi – конечные разности.

Обратная интерполяционная формула Ньютона

где
.

Интерполяционный многочлен Лагранжа – многочлен минимальной степени, принимающий данные значения в данном наборе точек.

Для n + 1 пар чисел

, где все xi различны, существует единственный многочлен L(x) степени не более n, для которого L(xi) = yi. В простейшем случае (n = 1) – это линейный многочлен, график которого – прямая, проходящая через две заданные точки.

Лагранж предложил способ вычисления таких многочленов:

где базисные полиномы определяются по формуле:

lj(x) обладают следующими свойствами:

а) являются многочленами степени n; б) lj(xj) = 1; в) lj(xi) = 0 при

.

Отсюда следует, что L(x), как линейная комбинация lj(x), может иметь степень не больше n, и L(xj) = yj.

1.2.3. Метод наименьших квадратов и его применения.

Задача приближения функции возникает при решении многих задач, а иногда и как самостоятельная. Например, если известна некоторая функция, которая задана аналитически или таблично, но получение значений этой функции сопряжено с большим объемом вычислений, то можно поставить задачу приближения этой функции другой функцией, близкой к исходной, но более удобной для расчетов. Например, замена функции многочленом позволяет получать простые формулы численного дифференцирования и интегрирования. Возникает также и другая задача – восстановление аналитического вида функции на некотором отрезке по заданным на нём значениям функции в дискретном множестве точек. Замена таблицы приближающей функцией позволяет получать ее значения в промежуточных точках. Теория приближения функций является важным вспомогательным аппаратом при численном решении дифференциальных уравнений.

В общем случае при постановке задачи приближения необходимо решить следующие вопросы.

Во-первых, требуется определить, какой класс приближающих функций необходимо выбрать. Здесь все зависит от вида приближаемой функции и целей, для которых в дальнейшем будет использоваться приближающая функция. Широко используются следующие классы функций: многочлены, тригонометрические функции, показательные и логарифмические функции и др.

Во-вторых, необходимо выбрать критерий близости исходной и приближающей функций. В качестве критерия можно выбрать, например, точное совпадение приближаемой и приближающей функций – задача интерполирования. Но при большом количестве узлов он является неудобным и сложным, так как потребует нахождения либо многочлена большой степени, либо другой громоздкой функции с графиком, проходящим через все табличные точки.

Часто с помощью какой-либо простой функции с проходящим около табличных точек графиком удается добиться эффекта сглаживания ошибок и получить достаточно точное приближение. В общем случае, необходимо добиться того, чтобы отклонение приближающей функции от приближаемой в табличных точках было минимально

Но использовать в качестве критерия близости сумму отклонений не имеет смысла, т. к. при сложении разности будут компенсировать друг друга. Поэтому, учитывая также и то, что величина погрешности в экспериментальных точках может быть разной, необходимо минимизировать среднее значение суммы абсолютных погрешностей в заданных точках. Если приближаемая функция y = f(x) задана таблицей своих значений: yj = f(xj), j = 1, 2, ..., n, и имеется некоторая приближающая функция Ф(х), определенная для всех значений xj, то данный критерий запишется следующим образом:

Это условие было предложено Эджвортом. В современной литературе этот способ аппроксимации носит название равномерное приближение. Однако приближение функций по этому способу в широкое употребление не вошло.

Вместо среднего значения модуля отклонения используется среднее квадратическое отклонение эмпирической и теоретической величины в соответствии с выражением:

Если же приближаемая функция y = f (x) задана аналитически, т. е. она считается известной в любой точке x отрезка [a; b], то близость между y и приближающей функцией Ф(x) понимается в интегральном смысле:

Такой выбор критерия близости и используется в методе наименьших квадратов.

Метод наименьших квадратов был предложен в начале XIX столетия К. Гауссом (1794–95) и независимо от него А. Лежандром (1805–06). Первоначально этот метод использовался для обработки результатов астрономических и геодезических наблюдений. Строгое математическое обоснование и установление границ содержательной применимости метода наименьших квадратов были даны А. А. Марковым и А. Н. Колмогоровым. Сейчас этот метод представляет собой один из важнейших разделов математической статистики и широко используется для статистических выводов в различных областях науки и техники.

Сущность обоснования метода наименьших квадратов (по Гауссу) заключается в допущении, что «убыток» от замены точного (неизвестного) значения физической величины её приближённым значением X, вычисленным по результатам наблюдений, пропорционален квадрату ошибки:

(X – μ)2, где μ – оцениваемая величина.

В этих условиях оптимальной оценкой естественно признать такую лишённую систематической ошибки величину X, для которой среднее значение "убытка" минимально. Именно это требование и составляет основу метода наименьших квадратов.