Смекни!
smekni.com

Методика обработки экспериментальных данных 2 (стр. 2 из 2)

Итак, эмпирическая функция распределения выборки служит для оценки теоретической функции распределения генеральной совокупности

5. Статистическая проверка гипотезы о нормальном распределении с помощью критерия Пирсона или Колмагорова

Проверку проводим с помощью критерия Пирсона.

В этом задании, с помощью критерии Пирсона проверим гипотезу о нормальном распределении генеральной совокупности, с этой целью будем сравнивать эмпирические и теоретические частоты.

– Среднее арифметическое значение

– Количество вариантов

– Шаг интервалов

– Оценка среднеквадратического отклонения.

Вычислим данные по таблице:

I ni Xi X (i+1) Zi Z (I+1)
1 1 -805 -780,6 -2,7340 -0,5 -0,469 3,1 1,4226 0,3226
2 1 -780,6 -756,2 -2,7340 -2,1140 -0,469 -0,408 6,1 4,2639 0,1639
3 4 -756,2 -731,8 -2,1140 -1,4941 -0,408 -0,285 12,3 5,6008 1,3008
4 7 -731,8 -707,4 -1,4941 -0,8741 -0,285 -0,099 18,6 7,2344 2,6344
5 26 -707,4 -683 -0,8741 -0,2542 -0,099 0,1141 21,31 1,0322 31,7222
6 33 -683 -658,6 -0,2542 0,3658 0,1141 0,2939 17,98 12,5473 60,5673
7 14 -658,6 -634,2 0,3658 0,9857 0,2939 0,4131 11,92 0,3630 16,4430
8 8 -634,2 -609,8 0,9857 1,6057 0,4131 0,4713 5,82 0,8166 10,9966
9 3 -609,8 -585,4 1,6057 2,2256 0,4713 0,4927 2,14 0,3456 4,2056
10 3 -585,4 -561 2,2256 0,4927 0,5 0,73 7,0588 12,3288
СУММА 100 100 40,6851 140,6851

X2набл=40,685

Контроль:

140,685–100=40,685

Исходя из требований, чтобы вероятность попадания критерия в критическую область в предположении справедливости нулевой гипотезы была равна принятому уровню значимости

.

Таким образом, правосторонняя критическая область определяется неравенством

, а область принятия нулевой гипотезы – неравенством
.

Уровень значимости

= 0,05;

По таблице критических точек распределения χ² (приложение 3), по уровню значимости α = 0,05 и числу степеней свободы K=10–3=7 находим критическую точку правосторонней критической области χ²кр (0,05; 7) = 14,1.

Вывод: Так как X2набл> X2кр, то нулевую гипотезу отвергают, значит гипотезу о нормальном распределении отвергают.


6. Расчет асимметрии и эксцесса

Асимметрия – отношение центрального момента 3-го порядка к кубу среднего квадратического отклонения.

, где

Эксцесс – характеристика «крутости» рассматриваемой случайной величины.

, где

Значение ХВ, s вычисляем по формулам:

,

где С – Ложный нуль (варианта, которая имеет наибольшую частоту).

,

где h – шаг (разность между двумя соседними вариантами);

(условный момент второго порядка);

(условный момент первого порядка);

(условная варианта).

Расчеты занесем в таблицу 7:


Xi Ni Ui XB M1 M2 s m3 m4 AS EK
-805 1 -2,73 -684,67 0,30 1,06 23,97 3433,28 4193007,72 0,25 12,71
-780,6 1 -2,11
-756,2 4 -1,49
-731,8 7 -0,87
-707,4 26 -0,25
-683 33 0,37
-658,6 14 0,99
-634,2 8 1,61
-609,8 3 2,23
-585,4 3 2,85

Вывод:

Т.к. асимметрия положительна то ‘длинная часть’ кривой распределения расположена справа от математического ожидания или мода.

Т.к. Эксцесс больше нуля, то кривая распределения имеет более высокую и ‘острую’ вершину, чем нормальная кривая.

7. Построение доверительного интервала для математического ожидания и среднего квадратического отклонения

Доверительный интервал для математического ожидания (с вероятностью g) находят как:

(7.1)

где n – объем выборки;

tg – случайная величина имеющее распределение Стьюдента находим по приложению 1.

s – исправленное среднее квадратическое отклонение;

– выборочное среднее;

Найдем интервал:

по приложению 1 находим tg= 1.984 при g=0.95 и n = 100;

=-684,67; s = 38,19;

Получаем

-692,25<a<-677.09

Доверительный интервал для среднего квадратического отклонения

(с надежностью g) находят как:

при q<1 (7.2)

при q>1 (7.3)

где q находят по приложению 2, по заданным n и g;

Исходя из приложения 2, n = 100 и g = 0.95 находим q=0.143;

Поэтому интервал находим по формуле (7.2):


32.73 <

< 43.65

Вывод:

Итак, с надежностью 0,95 неизвестное математическое ожидание ‘а’ находится в доверительном интервале -692,25<a<-677.09, а неизвестное среднее квадратическое отклонение ‘’ находиться в доверительном интервале 32.73 <

< 43.65.

Вывод

Для представления генеральной совокупности я исследовала выборку, которая имеет объём 100 элементов.

Я нашла:

размах варьирования R=244;

среднеарифметическое значение статистического ряда

=-684,67;

несмещенную оценку генеральной дисперсии s2=1458,99;

среднее квадратическое отклонение s=38,19;

медиану МВ=-689 и коэффициент вариации V=

5,58%.

С надежностью 0.95 оценил математическое ожидание в интервале

-692,25<а< -677,09

и среднее квадратическое отклонение в интервале

32,73 <

< 43,65

Выборка имеет варианты x = -731, x = -703,x = -701,x = -700,x = -697, x = -689,x = -686, x = -681, x = -667, которые встречаются 3 раза.

На рис. 1 построила гистограмму и полигон относительных частот. По рис. 1 можно выдвинуть гипотезу о нормальном распределении генеральной совокупности.

После проверки гипотезы о нормальном распределении с помощью критерия Пирсона при a=0.05, я отвергла ее. Из этого следует, что расхождения между практическими и теоретическими частотами значимо.

Асимметрия as=0,25. Из этого следует, что правое крыло функции более вытянуто относительно ее моды.

Эксцесс ek=12,71. Из-за того, что у эксцесса положительный знак, эмпирическая функция распределения острее по сравнению с теоретическим распределением.


Список литературы

1. Гмурман В.Е. Руководство к решению задач по теории вероятностей и математической статистике. М.: Высшая школа, 2001.

2. Гмурман В.Е. Теория вероятностей и математическая статистика.

М.: Высшая школа, 2001.